
Grading-Based Test Suite Augmentation
Jonathan Osei-Owusu∗, Angello Astorga∗, Liia Butler∗, Tao Xie†, and Geoffrey Challen∗

∗Department of Computer Science, University of Illinois at Urbana-Champaign
{jo28, aastorg2, liiamb2, challen}@illinois.edu

†Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
taoxie@pku.edu.cn

Abstract—Enrollment in introductory programming (CS1)
courses continues to surge and hundreds of CS1 students can
produce thousands of submissions for a single problem, all
requiring timely and accurate grading. One way that instructors
can efficiently grade is to construct a custom instructor test suite
that compares a student submission to a reference solution over
randomly generated or hand-crafted inputs. However, such test
suite is often insufficient, causing incorrect submissions to be
marked as correct. To address this issue, we propose the Grasa
(GRAding-based test Suite Augmentation) approach consisting
of two techniques. Grasa first detects and clusters incorrect
submissions by approximating their behavioral equivalence to
each other. To augment the existing instructor test suite, Grasa
generates a minimal set of additional tests that help detect the
incorrect submissions. We evaluate our Grasa approach on a
dataset of CS1 student submissions for three programming prob-
lems. Our preliminary results show that Grasa can effectively
identify incorrect student submissions and minimally augment
the instructor test suite.

Index Terms—CS education; testing; clustering; test generation

I. INTRODUCTION

Enrollment in introductory programming (CS1) courses
continues to surge at remarkable rates [1]. As current instruc-
tional resources cannot keep pace with the rapidly growing
demand, instructors must adapt or face a decline in CS1-
course quality [1]. One key area in need of critical attention
is grading. For a programming problem, hundreds of students
can produce thousands of submissions over the period of a
semester. Each of these submissions must be graded to provide
feedback critical to student learning [2]. However, grading
approaches reasonable for a small class (e.g., inspecting and
grading each submission by hand) are no longer viable as the
class size increases. Automated testing, while not exclusive
to a large class, remains the most common approach to
evaluate a large number of CS1 student submissions related
to programming.

One way for instructors to grade efficiently is to construct
a custom test suite that compares a submission to a reference
solution over randomly generated or hand-crafted inputs. Such
test suite is often insufficient, failing to include corner-case
inputs for exposing faults in some incorrect submissions. As
a result, incorrect submissions may be mistakenly marked as
correct1. A test suite of insufficient quality not only may cause
unfairness to students (e.g., students who do not meet the

1Correct ones may also be marked as incorrect; however, in our experience
such cases are usually reported by students.

intended expectations of a problem receive the same grade
as students who do), but also may cause instructors to miss
valuable opportunities to gain insight about issues in students’
learning. This shortcoming is exacerbated as the class size
increases and subsequently the number of different ways that
submissions are incorrect increases.

To address test-suite insufficiency in CS education, we
propose a new approach of conducting test suite augmentation,
namely, the Grasa (GRAding-based test Suite Augmentation)
approach, in the space of multiple (correct or incorrect)
implementations of the same specification. The main objective
of Grasa is to augment the given instructor test suite with a
minimal set of generated tests that aim to detect a maximum
number of incorrect submissions. The reasons for emphasizing
“minimal” tests in Grasa’s main objective are (1) minimizing
the generated tests can alleviate the burden of instructors who
wish to maintain control of assigning different point values per
test (e.g., some tests are more important than others) while
manually inspecting the generated tests; (2) minimizing the
generated tests can reduce the runtime cost for executing these
tests, especially when they are run against a large number of
submissions.

To accomplish the main objective, Grasa first runs the
given instructor test suite TI on each submission against a
reference solution R to identify and focus on only those sub-
missions C determined by TI to be correct. Then we conduct
Grasa’s two techniques: behavioral-equivalence approximation
and equivalence-guided test generation.

In the technique of behavioral-equivalence approximation,
two programs (e.g., submissions and R) are approximately
behaviorally equivalent if they produce the same outputs on
the sample inputs (in the input space) produced by a structural
test generator such as Pex [3]. We group programs into a
cluster when these programs are approximately behaviorally
equivalent. The cluster including R is the cluster of correct
submissions, and each of the remaining clusters is a cluster of
incorrect submissions.

Then in the technique of equivalence-guided test generation,
we again leverage Pex to generate a minimal set of tests TTG

that help detect the incorrect submissions detected by the
technique of behavioral-equivalence approximation. Finally,
we use the generated tests to augment the given instructor
test suite.

In summary, this paper makes the following main contribu-
tions:

Fig. 1. Overview of the proposed Grasa approach.

• GRAding-based test Suite Augmentation (Grasa) for
conducting test suite augmentation based on multiple
(correct or incorrect) implementations of the same spec-
ification, with the target application domain as CS edu-
cation.

• Techniques for identifying and clustering incorrect sub-
missions and for augmenting the given instructor test suite
with a minimal set of generated tests that help detect the
incorrect submissions.

• Preliminary Results on submissions for three pro-
gramming problems from a CS1 course spanning two
semesters.

II. APPROACH

Our Grasa approach consists of two techniques: behavioral-
equivalence approximation and equivalence-guided test gener-
ation, as shown in Figure 1.

A. Behavioral-Equivalence Approximation

Our technique of behavioral-equivalence approximation first
checks the behavioral equivalence (in later parts of this
section, we explain how to accomplish this checking in an
approximate way) between each submission in the initial set
of submissions C (determined by the instructor test suite TI to
be correct) with the reference solution R. Any submission non-
equivalent to R is detected as an incorrect submission. Then
all the submissions equivalent to R are put into the cluster of
correct submissions.

For the remaining incorrect submissions, our technique
further checks the behavioral equivalence between every two
incorrect submissions. Two equivalent incorrect submissions
are put into the same cluster of incorrect submissions (i.e.,
they are incorrect in the same way).

To check behavioral equivalence in an approximate way, we
extend Paired Symbolic Execution (PSE) [4], [5]. PSE intends
to generate test inputs for exposing different behaviors of two
given programs sharing the same interface (e.g., the same
method signature). Its key idea is to first construct a wrapper
method to compare the outputs of the two programs given the
same inputs, and then apply a structural test generator such
as Pex [3] on this wrapper method to generate its argument
values aiming to achieve high branch coverage of the wrapper
method along with the methods directly or indirectly invoked
by the wrapper method. Some generated argument values for

1 public static void WrapperForPairedSymbolicExecution(args) {
2 assert(IsEqual(prog1(args), prog2(args));
3 }

Fig. 2. Simplified wrapper constructed for paired symbolic execution.

the wrapper method may be able to cause different outputs of
the two programs under comparison.

Figure 2 shows a simplified version of a wrapper method. In
this simplified version, we assume that both programs are static
methods, and their method arguments, denoted as args, are
either primitive-type arguments or immutable objects. assert
with the boolean argument is a typical assertion method (e.g.,
one commonly used in a unit testing framework). isEqual is a
method for checking the equivalence of two values specified in
its two arguments. When the two values are of non-primitive
type, isEqual can be implemented as checking the object-state
equivalence [6] based on its custom equals method.

When the method arguments args include mutable objects,
the simplified wrapper method shown in Figure 2 is extended
to declare two arguments denoted as argProg1 and argProg2 for
each mutable argument of the programs. Then the beginning
of the wrapper method body invokes an assumption method:
assume(isEqual(argProg1, argProg2)). If any generated ar-
gument values for the wrapper method cause the boolean
argument of assume to be false, the generated argument values
are automatically discarded (i.e., classified as invalid).

When the programs under comparison are non-static meth-
ods (thus having receiver objects, being mutable), similarly
the simplified wrapper method shown in Figure 2 declares
two arguments denoted as receiverProg1 and receiverProg2,
and the beginning of the wrapper method body invokes
assume(isEqual(receiverProg1, receiverProg2)).

Note that additionally, the end of the wrapper method body
invokes the assertion method for asserting the equivalence of
two updated receiver objects (for non-static methods under
comparison) or two updated mutable argument objects (for
methods under comparison including a mutable argument).

After applying a structural test generator such as Pex [3]
on the wrapper method to generate tests (i.e., argument values
for the wrapper method), we say that two programs are
approximately behaviorally equivalent, in short as equivalent
for simplicity, when all of the following three conditions are
satisfied: (1) there is no generated test for causing violation of

any assertion synthesized by us in the wrapper method body;
(2) if the program inputs (e.g., receiver object and method
argument values) derived from a generated test cause one
program to throw an exception, then the (equivalent) program
inputs derived from the same test also cause the other program
to throw an exception of the same type; and (3) if the program
inputs derived from a generated test cause one program to
execute infinitely, then the (equivalent) program inputs derived
from the same test also cause the other program to execute
infinitely. To support Conditions 2 and 3 (which are heuristic
by nature for behavioral-equivalence checking), we further
extend the wrapper method with additional checking code.

B. Equivalence-Guided Test Generation

The technique of equivalence-guided test generation aug-
ments the given instructor test suite with a minimal set of
tests that can detect the incorrect submissions (detected by the
technique of behavioral-equivalence approximation), i.e., can
detect behavioral inequivalence between the reference solution
R and the incorrect submissions.

Note that a test that can detect behavioral inequivalence
between R and a submission in a cluster can also detect
behavioral inequivalence between R and all other submissions
of the same cluster. Thus, to guide generation of minimal tests,
our technique selects only one representative from each cluster
of incorrect submissions, i.e., N representatives where N is
the total number of clusters of incorrect submissions (resulted
from the technique of behavioral-equivalence approximation).

Our technique works on iterations, each of which includes
two steps. In Step 1, we conduct greedy test generation:
generate a single test t that can detect behavioral inequiva-
lence between R and the maximum number of representatives
under consideration denoted as Sr (which initially include
all N representatives). Our greedy test generation iteratively
constructs a wrapper with a simplified one shown in Fig-
ure 3, and then applies a structural test generator such as
Pex [3] on this wrapper method till the test generator generates
an assertion-violating test. In Figure 3, representative1, ...,
representativeC are all the representatives from Sr. G in Line
10 is a constant initially set as |Sr| and decremented by 1
iteratively till an assertion-violating test is generated by the
test generator.

In Step 2, from Sr we remove the representatives detected
by t (generated in Step 1) to be incorrect (i.e., causing to
cover the true branch of their corresponding if statements in
the wrapper method body), and conduct greedy test generation
again until Sr is empty.

Finally, all the tests t generated from all iterations are the
minimal set of tests produced by our technique.

III. PRELIMINARY EVALUATION

A. Evaluation Setup

Our evaluation subjects include student submissions for
three programming problems given in quizzes and exams in a
CS1 course:

1 public static void WrapperForEquivGuidedTestGen(args){
2 int count = 0;
3 if !IsEqual(representative1(args), R(args))
4 count++;
5 if !IsEqual(representative2(args), R(args))
6 count++;
7 ...
8 if !IsEqual(representativeC(args), R(args))
9 count++;

10 assert(count < G);
11 }

Fig. 3. Simplified wrapper constructed for equivalence-guided test generation.

TABLE I
PRELIMINARY RESULTS

Problem # Clusters # Incorrect # Tests Min.
Tests

AddToEnd 5 10 3 2
Partitioner 3 4 3 2
Sort 0 0 0 0

• AddToEnd. A method that takes as input an integer and
appends it to the end of a singly-linked list. This method
is defined in a singly-linked list class (with member
variables defined by the instructor) where students need
only to fill in the AddToEnd method body.

• Partitioner. A method that takes as input an array of
integers. The method returns an index such that the
element to this index’s left (right) is strictly less (greater)
than or equal to the element stored at the indexed location.

• Sort. A method that takes as input an array of integers
and returns the array sorted in the ascending order.

All of the student submissions are originally written in
Java. We take the submissions classified as correct by the
instructor test suite and translate them to C# via the Sharpen
tool [7]. This translation is done to make the student sub-
missions compatible with Pex [3], the used test generator2.
In addition, we write factory methods to help Pex create
complex objects as inputs (e.g., AddToEnd’s singly-linked lists)
and IsEqual methods that help determine whether complex
data structures are equivalent. For AddToEnd, there are totally
3,985 submissions, from which 308 are marked correct and
302 are used in our evaluation; we omit 6 submissions that
cause translation failures. For Partitioner, there are totally
1870 submissions, from which 174 are marked correct and
analyzed. For Sort, there are totally 4481 submissions, from
which 242 are marked correct and analyzed.

B. Preliminary Results

Table I shows the results of applying our Grasa approach on
the evaluation subjects. In two out of the three programming
problems, Grasa detects incorrect submissions that are mistak-
enly classified by the existing instructor test suite as correct.
In particular, for AddToEnd and Partitioner, Grasa detects 10
and 4 incorrect submissions, respectively. Grasa forms 5 and

2We use Pex because of its effectiveness in previous related work [5].
However, alternative structural test generators could also be used.

3 clusters for these incorrect submissions of AddToEnd and
Partitioner, respectively.

In Table I, “# Tests” denotes the total number of
incorrectness-exposing (IE) tests produced across all clusters,
one IE test per cluster (when the same test is generated for
multiple clusters, we count it only once). “# Min. Tests”
denotes the number of minimal IE tests produced by Grasa.
The results show that for both AddToEnd and Partitioner, “#
Tests” as 3 is reduced to “# Min. Tests” as 2. We conduct
additional experimentation to confirm that 2 IE tests are indeed
the minimal tests for exposing the incorrect submissions.

An example IE test produced by Grasa to augment
AddToEnd’s instructor test suite appends an integer to the end of
a list with an initial size of 1. In the instructor test suite before
augmentation, 32 instructor-constructed lists used for testing
are randomly generated with constrained size limits between
1 and 32. However, randomly generating a list of size 1 is not
guaranteed. 7 of the 10 Grasa-identified incorrect submissions
exhibit undesirable behavior in this corner case.

Note that because the instructor test suites (including
random-test generation) constructed by the instructor for the
three programming problems are of quite high quality already,
we expect the extent of benefits brought by Grasa to be much
higher for general cases.

IV. RELATED WORK

Existing work on test suite augmentation [8], [9], [10]
focuses on generating additional tests that cover the (typically
small) changes from one version of a program to its next
version. However, the existing work does not address the case
(focused by our approach) where a test suite can be used
to assess the correctness of multiple implementations with
respect to the same specification, e.g., student submissions and
reference solution. In particular, the existing work often cannot
handle changes across these multiple implementations, given
that these changes are typically much more substantial than
those changes across nearby versions of a program.

Due to rapid growth in enrollment of CS courses, various
approaches help instructors understand a large number of
student submissions and help enable other analyses such
as automated repair and feedback generation. For example,
Gulwani et al. [11] cluster correct programs based on their
runtime control flow and variable-value equivalence through-
out program execution in order to generate repairs for incorrect
programs. Head et al. [12] cluster programs based on learned
code transformations for representing a fix. In order to learn a
transformation, their approach requires the existence of a pair
of incorrect and correct programs being sufficiently similar,
whereas our approach does not have this requirement. Singh et
al. [13] formulate feedback generation as a synthesis problem;
our future work plans to use synthesis-based approaches [14]
to learn preconditions as feedback for summarizing incorrect
behaviors of incorrect student submissions.

V. CONCLUSION

To address the insufficiency of an instructor test suite for
grading student submissions, in this paper, we have presented

the Grasa (GRAding-based test Suite Augmentation) approach
that first detects and clusters incorrect submissions and then
generates a minimal set of additional incorrectness-exposing
tests to augment the existing test suite. Our preliminary
evaluation results on three programming problems demonstrate
the effectiveness of Grasa.

In our approach, checking behavioral equivalence is ap-
proximated with a structural test generator, whose checking is
incomplete by nature. Our preliminary results show that our
test generation can still find additional incorrect submissions
not detected by the existing instructor test suite, which is
already of quite high quality with random test generation.

In addition, the provided reference solution can be in-
complete specification of the problem’s desired behaviors. If
the reference solution captures only one of multiple possible
desired behaviors, then our approach would misclassify correct
submissions as incorrect, but such misclassification cases can
often be caught by either students or instructors. In addition,
our approach can be easily extended to support multiple refer-
ence solutions with different desired behaviors: a submission
is determined as correct when its behavior is equivalent to one
of the multiple reference solutions.

ACKNOWLEDGMENT

We thank Jacob Laurel, Wing Lam, August Shi, and
Nicholas Strole for their feedback, and Vijayendra Japtap for
his help on our earlier work. This work was supported in
part by NSF under grant no. CNS-1564274, CCF-1816615,
the NSF of China under Grant No. 61529201, a grant from
Futurewei, and the GEM fellowship.

REFERENCES

[1] T. Camp, W. R. Adrion, B. Bizot, S. Davidson, M. Hall, S. Hambrusch,
E. Walker, and S. Zweben, “Generation CS: The growth of computer
science,” ACM Inroads, 2017.

[2] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K.
Norman, How Learning Works: Seven Research-Based Principles for
Smart Teaching. Jossey-Bass, 2010.

[3] N. Tillmann and J. de Halleux, “Pex–white box test generation for
.NET,” in TAP 2008.

[4] K. Taneja and T. Xie, “DiffGen: Automated regression unit-test gener-
ation,” in ASE 2008.

[5] S. Li, X. Xiao, B. Bassett, T. Xie, and N. Tillmann, “Measuring
code behavioral similarity for programming and software engineering
education,” in ICSE 2016 SEET.

[6] T. Xie, D. Marinov, and D. Notkin, “Rostra: A framework for detecting
redundant object-oriented unit tests,” in ASE 2004.

[7] Sharpen. https://github.com/mono/sharpen.
[8] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.

Harrold, “Test-suite augmentation for evolving software,” in ASE 2008.
[9] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux, “eXpress: Guided

path exploration for efficient regression test generation,” in ISSTA 2011.
[10] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incremental

symbolic execution,” in PLDI 2011.
[11] S. Gulwani, I. Radiček, and F. Zuleger, “Automated clustering and

program repair for introductory programming assignments,” in PLDI
2018.

[12] A. Head, E. Glassman, G. Soares, R. Suzuki, L. Figueredo, L. D’Antoni,
and B. Hartmann, “Writing reusable code feedback at scale with mixed-
initiative program synthesis,” in L@S 2017.

[13] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in PLDI 2013.

[14] A. Astorga, P. Madhusudan, S. Saha, S. Wang, and T. Xie, “Learning
stateful preconditions modulo a test generator,” in PLDI 2019.

