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We present an approach to learn contracts for object-oriented programs where guarantees of correctness of
the contracts are made with respect to a test generator. Our contract synthesis approach is based on a novel
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synthesize tight contracts. We implement our approach in a tool called Precis and evaluate it on a suite of
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1 INTRODUCTION
Research in academia and industry has argued for annotating code using formal contracts to
engineer and maintain reliable software [Barnett et al. 2004; Fähndrich 2010; Leavens et al. 2006;
Meyer 1988; Spivey 1988]. Annotations for a method in a class typically consist of preconditions
and summaries (also named postconditions). Preconditions are assumptions that must be satisfied
by the input parameters and the receiver object before a client invokes the method on it. Summaries
capture the effect of executing the method both in terms of the return value and the receiver object.
In other words, formal contract specifications describe the assumptions that classes/methods make
on their clients as well as the commitments that they promise to their clients in terms of their
functional behaviors.
Annotating software components with contracts has many potential benefits. Contracts can

be used for understanding the intended usage of software libraries and for documenting legacy
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code. Contracts also facilitate modular software development and evolution—components can be
developed independently and swapped in as long as they maintain the contracts that they agree
upon [Meyer 1988]. Furthermore, contracts documenting how modules behave in a formal language
can enable various downstream analyses such as unit testing (to supply strong test oracles for
checking the module under test without knowing its clients), runtime monitoring [Chen and Roşu
2007] (to detect runtime behavior deviating from specifications), and formal verification [Floyd
1960; Hoare 1969] (to conduct deductive verification using contracts as formal specifications).
Various specification languages for contracts have been developed and used in industry, including
Design by Contract (DbC) [Meyer 1988], Java Modeling Language (JML) [Leavens et al. 2006],
Spec# [Barnett et al. 2004], and CodeContract for C# and other .NET languages [Fähndrich 2010].

Over the years, various research efforts have focused on specification mining, i.e., automatically
inferring contracts for code [Alur et al. 2005; Ammons et al. 2002; Ernst et al. 1999; Henzinger et al.
2005], to alleviate the programmer’s burden of writing specifications. One basic question that arises
when inferring contracts is on the guarantees given on their correctness. At one extreme, we can
demand that the contracts be formally proven to be correct. However, this requirement mandates
automatic formal verification [Alur et al. 2005; Henzinger et al. 2005], which is a hard problem
(undecidable) requiring approaches that do not scale well for large code such as inferring loop
invariants and solving sophisticated logical validity of verification conditions. On the other end,
various approaches infer contracts from dynamic executions of the target program on a fixed set of
tests. A classic approach that falls in this category is Daikon [Ernst 2000; Ernst et al. 1999]. Most
of these approaches [Ammons et al. 2002; Astorga et al. 2018; Csallner et al. 2008; Ernst et al. 1999]
give no measurement of the accuracy of synthesized contracts, let alone a guarantee of correctness.
In this paper, we follow a third approach that guarantees correctness with respect to a test

generator (introduced for preconditions in recent work [Astorga et al. 2019]). More precisely, we
demand that a deterministic test generator with a fixed set of resources should not be able to find
faults with correctness of the synthesized contracts. Contract synthesis algorithms that give such
an assurance could work in tandem with a test generator in order to mine contracts. The salient
feature of this approach is that it avoids the hardness of automatic program verification while
at the same time giving some guarantees of correctness that cannot be provided by approaches
based on dynamic analysis on a fixed finite set of tests. In this paper, we undertake the problem of
synthesizing contracts whose safety is guaranteed modulo a test generator.

A contract, in this paper, is meant to summarize the input-output behaviors of methods in classes
in an object-oriented programming language given preconditions for these methods. Preconditions
can be given by users, or taken to be the trivial precondition true. They can also be synthesized
automatically to avoid errors/exceptions. The contract for a method is a summary of its behavior,
and captures the effect of calling the method. It is expressed as a property relating input parameters
(which may include other objects) and the state of the receiver object before the method is called
with the return value and the state of the receiver object after the call. Properties about an object are
expressed using observer methods that are pure methods for revealing properties of the object. The
contract summarizes the effect of calling the method on all inputs satisfying the given precondition
and on which the method terminates (inputs that cause exceptions or errors are ignored). A contract
for a method is said to be safe if on any possible input state that satisfies the precondition, the
method’s behavior, if terminating, satisfies the contract.

The general architecture that we propose for contract synthesis modulo a test generator is to pair
a contract synthesizer (aka learner) with the test generator (teacher), similar to the recent work [As-
torga et al. 2019]. Inference proceeds in rounds, where in each round the synthesizer proposes
contracts that the test generator tries to refute for safety, and where refutations result in concrete
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input-output behaviors of the method. The contract synthesizer utilizes these counterexamples of
safety to synthesize a safe contract modulo the test generator.
One-class Classification. The primary challenge in instantiating this general architecture is in
determining how to ensure that contracts are strong.1 A trivial contract such as true is obviously
safe for any method, but is the weakest contract and is useless. From a learning perspective, the
example behaviors exposed by a test generator can be seen as positively labeled samples. Note that
a test generator cannot be reasonably expected to give negatively labeled samples (examples of
behaviors, abstracted by observations, that cannot be manifested by the method). This characteristic
makes the learning problem significantly different from existing related work. For instance, work on
precondition synthesis modulo a test generator studied in the recent work [Astorga et al. 2019] is a
setting where the learner learns from both positive and negative examples (since the test generator
can produce inputs that cause exceptions as well as inputs that do not).

The learning problem in contract synthesis is in fact best seen as a one-class classification (OCC)
learning problem [Moya and Hush 1996], which is the problem of learning from only positive
samples in Boolean classification. The most important question that we tackle in this paper is how
to learn strong contracts from (positive) samples of observations of behaviors, while at the same
time guaranteeing that each round of learning converges to a tight contract.

We address the preceding problem using primarily two technical contributions. First, we define
tight contracts (more generally, 𝑘-tight contracts, for 𝑘 ∈ N), a new technical notion that negotiates
a balance between simplicity of contracts and their strength, to avoid both extremely weak contracts
as well as contracts that overfit. Second, we design a new learning algorithm that synthesizes tight
contracts using state-of-the-art expression synthesis techniques that combine constraint solving
and syntax-guided synthesis.
Tight Contracts. The contract synthesis algorithm that we develop automatically synthesizes
atomic predicates and using quantifier-free logic, captures relationships between integer and
Boolean variables that capture input parameters, output values, and properties of object states.
For the purpose of describing tight contracts, let us fix a particular set of predicates (these would
have been synthesized for the current round of learning). Contracts can then be seen as Boolean
combinations of this set of atomic predicates.

We require contracts to be safe with respect to the set of behaviors exposed thus far by the test
generator, of course. We also would like contracts to be strong in that they capture small semantic
spaces (the semantic space of a contract 𝜑 is J𝜑K, the set of models satisfying 𝜑).

However, given a set of behaviors, it may not be wise to always synthesize the strongest Boolean
formula that includes the sample behaviors. Learning such strongest formulae (called overfitting in
learning) is unlikely to result in safe contracts, and hence would increase the number of rounds to
converge to a safe contract.
Our proposal in this paper is a novel notion called tight contracts that aim to be strong while

utilizing a small number of disjunctions. We express contracts using decision trees with conjunctive
leaves and use the number of conditionals in a decision tree to measure how “disjunctive” a concept
is. Intuitively, there are two extreme kinds of contracts. We can use no disjunctions, and take the
strongest contract expressible as a conjunction— but this contract would be a weak one. On the
other hand, the strongest contract can be obtained by taking a disjunction of conjuncts, one disjunct
for each sample that is the conjunction of all predicates true in that sample. This contract would
have, however, a lot of disjuncts. We say that a concept decision tree 𝜑 with 𝑛 conditionals is 𝑘-tight
with respect to a set of samples 𝑆 if there is no stronger decision tree that includes the samples 𝑆 and

1A contract 𝜑 is said to be stronger than a contract𝜓 if 𝜑 ⇒ 𝜓 . The notion of a strong contract is not a formal notion.
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has at most 𝑛 + 𝑘 conditionals. In particular, we are interested in 1-tight contracts (which we also
simply call tight contracts).
Consider a set of samples 𝑆 and a contract 𝜑 that includes 𝑆 (each element of 𝑆 satisfies 𝜑). If

there exists a stronger contract than 𝜑 (expressible over the current predicates) that includes 𝑆 and
that uses at most one more conditional, then 𝜑 is not tight. Our learning algorithm will prefer to
use an extra conditional to obtain a stronger contract, and hence avoid proposing 𝜑 . If more than
one more conditional is required to capture stricter concepts than 𝜑 that include 𝑆 , we declare 𝜑
tight.

The goal of the learning algorithm is to learn in each round (as well as finally) a tight (or 𝑘-tight)
contract with respect to the set of behaviors exposed by the test generator. This negotiation between
the number of disjunctions in concepts and their strength is designed to avoid extreme overfitting,
allowing the number of disjunctions to grow dynamically only when justified to capture stronger
contracts.

The proof that learning tight contracts is effective ultimately lies in our experimental evaluation.
We show in our evaluation that the learning algorithm for learning tight contracts converges to
safe and strong contracts (see Section 6).
Learning Tight Contracts.We develop a novel learning algorithm for synthesizing tight contracts.
We consider contracts expressed in quantifier-free Boolean-closed logics over a class of atomic
predicates, where atomic predicates can involve arbitrary linear arithmetic constraints.
Our learning algorithm synthesizes tight contracts by a careful dovetailing between two tasks.

The first task is to synthesize tight decision trees over a fixed set of atomic predicates (that are
synthesized by the second task). Finding tight contracts for a set of sample behaviors is nontrivial
since the notion of tightness is logically complex (involving universal quantification). We need to
find a decision tree 𝑇 with 𝑛 conditionals (preferably for a small 𝑛) that includes all samples such
that all decision trees with at most 𝑛 + 1 conditionals and that includes all samples not stronger
than 𝑇 .

We solve the synthesis problem of tight contracts precisely. We propose a novel algorithm that
uses repeated calls to SyGuS [Alur et al. 2015] (SYntax-GUided Synthesis) solvers (which tackle
SyGuS synthesis problems), and that ensures that there are no 𝑘 + 1 conditional trees capturing
a stronger concept. Using recent progress in solving Boolean SyGuS problems [Alur et al. 2015;
Reynolds et al. 2019], we develop an effective learning algorithm for tight concepts. Furthermore,
by increasing the number of disjunctions iteratively, the learning algorithm tries to minimize the
number of disjuncts in the tight decision tree that it synthesizes.

The preceding task interleaves with the second task of expression synthesis to infer atomic pred-
icates that capture functional relationships between output states and input states. We synthesize
such expressions on the leaves of tight decision trees constructed as above, growing the set of
predicates on which decision trees are constructed. The atomic predicates that we synthesize can be
from various grammars and logics; in our implementation, we synthesize expressions over arbitrary
linear arithmetic on integer parameters and observer method returns. Expression synthesis is also
achieved using SyGuS solvers [Alur et al. 2015; Reynolds et al. 2019].
We prove that the synthesizer, despite the preceding dovetailing between tight decision tree

synthesis and predicate synthesis over an infinite grammar, terminates for any set of sample
behaviors (i.e., each round of learning terminates). Moreover, when plugged into the architecture,
working in tandem with a test generator, if learning terminates, we can make the following
guarantees of the produced contract (1) that it is safe with respect to the test generator, and (2)
that it is tight (or 𝑘-tight) with respect to the set of all behaviors exposed by the test generator in
various rounds.
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Evaluation. We implement a prototype for our approach in a tool called Precis using an industrial
test generator Pex [Tillmann and De Halleux 2008] (aka IntelliTest), available in the Visual Studio
2019 Enterprise Edition. We evaluate our prototype on our benchmarks including a set of C# classes.
We study three research questions for evaluating Precis: (a) how safe synthesized contracts are, (b)
how strong synthesized contracts are, and (c) ablation studies for studying the effect of predicate
synthesis, the ability to express disjunctions, as well as the choice of 1-tightness. Our results
show that Precis, which by design always synthesizes tight (i.e., 1-tight) contracts, is effective in
synthesizing safe and strong contracts. We also compare contracts synthesized by Precis with
contracts synthesized by Daikon paired with a test generator. Our results show that contracts
synthesized by Precis are stronger than contracts synthesized by Daikon for about half of our
benchmark subjects.

In summary, this paper makes the following main contributions:

• A novel notion of tight (and 𝑘-tight) contracts that balance strength and expression simplicity
of contract summaries.
• A novel problem formulation of synthesizing contracts in an object-oriented setting modulo
a test generator. Given a program, a precondition for the program, and a test generator, the
problem is to find a contract summary (for inputs that satisfy the precondition) that is both a
tight contract and also is safe with respect to the test generator.
• A novel online decision-tree one-class classifier learning algorithm that synthesizes tight
decision trees. This algorithm combines predicate synthesis and tight formula synthesis, and
has a nontrivial proof of termination.
• An implementation of our learning algorithm in conjunction with the state-of-the-art testing
tool Pex [Tillmann and De Halleux 2008] as the test generator, and an evaluation of the
strength and safety of synthesized contracts on a set of benchmarks, as well as a comparison
with Daikon.

2 AN ILLUSTRATIVE EXAMPLE
In this section, we illustrate our contributions through an example. Consider a dictionary object

𝑑 and its Setter method (shown in Figure 1) that takes as input integer parameters key and value.
Given this key-value pair, the Setter method updates the value indexed by key if key is already
present (Lines 10-19). Otherwise, Setter computes the bucket and index in the bucket where the
pair can be inserted (Lines 21-22) and then adds the pair to the dictionary (Lines 24-28).
Given this Setter method, our approach aims to learn a contract that is strong in that it tries to

precisely describe the set of input-output behaviors of Setter. In this example, let us assume that
the precondition is the trivial one true that allows calling the method in any object state and with
any possible input parameters. Viewing the contract summarizing the behavior of the method as a
formula satisfied by the combined input and output state, we want this formula to be as strong as
possible.
The algorithm fixes a set of Boolean and integer features. The Boolean features include

ContainsKeypre (key) and ContainsKeypost (key), obtained by calling a Boolean observer method
on the input parameter 𝑘𝑒𝑦, that evaluate to whether 𝑘𝑒𝑦 is in the dictionary in the pre- and post-
states of the object. Similarly, the Boolean featuresContainsValpre (𝑣𝑎𝑙𝑢𝑒) andContainsValpost (𝑣𝑎𝑙𝑢𝑒)
record the observer method call that evaluates whether there exists a key in the dictionary that
maps to 𝑣𝑎𝑙𝑢𝑒 in the pre- and post-states. The integer features include key and value, as well as
𝐶𝑜𝑢𝑛𝑡pre and 𝐶𝑜𝑢𝑛𝑡post, which are observer method calls to 𝐶𝑜𝑢𝑛𝑡 () that returns the number of
key-value pairs in dictionary object 𝑑 .
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1 private void Setter(TKey key, TValue value, bool add){

2 if (key == null)

3 throw new ArgumentNullException("nameof(key)");

4 if (buckets == null)

5 Initialize(0);

6
7 int hashCode = this.GetHashCode(key);

8 int targetBucket = hashCode % this.buckets.Length;

9
10 for (int i = this.buckets[targetBucket]; i >= 0;

11 i = this.entries[i].next) {

12
13 if (this.entries[i].hashCode == hashCode &&

14 this.entries[i].key == key) {

15
16 this.entries[i].value = value;

17 return;

18 }

19 }

20
21 int index;

22 index, targetBucket = this.GetNextIndexBucket(hashCode);

23
24 this.entries[index].hashCode = this.hashCode;

25 this.entries[index].next = this.buckets[targetBucket];

26 this.entries[index].key = key;

27 this.entries[index].value = value;

28 this.buckets[targetBucket] = index;

29 }

Fig. 1. Details of the Setter method (simplified for ease of illustration) used in the working example.

The algorithm starts with a set of base predicates 𝑅𝑏 over integer features; these predicates include
simple predicates over integers such as 𝑥 ≤ 𝑦, 𝑥 = 𝑦, 𝑥 < 𝑦, where 𝑥,𝑦 range over the integer
features described earlier. The set of predicates grow as we synthesize new predicates to describe
the behaviors of the method.
Our synthesis of contracts proceeds in rounds, where in each round we have a test generator,

with a fixed set of resources, for exploring a (finite) set of input-output behaviors of the method,
given the current conjectured contract for it. We represent an input-output behavior as a feature
vector fv over integer and Boolean features (which include observer methods applied on all relevant
objects, including the pre and post objects of the receiver object).
The goal of the learner in each round is to synthesize a strong formula that includes all the

observed input-output behaviors, i.e., all the feature vectors should make the synthesized formula
true.
One trivial strong contract that can be learned is to simply interpret each feature vector as

a formula and take the disjunction of these formulas. However, this contract will have a large
number of disjunctions. Such a strong contract will also likely be unsafe, leading to further rounds
of learning. In learning, this situation is called overfitting as the learned concept does not generalize
well.

One way to avoid this kind of overfitting is to restrict to formulas with only conjunctions. We can
in fact learn the strongest conjunctive concept that includes the set of behaviors. For example, over
a particular set of observed behaviors, the learner could learn the following conjunctive contract:

(ContainsKey(key)post∧ContainsVal(value)post∧Countpre ≥ 0∧Countpost ≥ 1∧Countpost ≥Countpre)
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This contract says that (1) (key, value) pair will be in 𝑑 after invoking Setter, (2) that the number of
key-value pairs in the pre state is at least zero and in the post state is at least one, and (3) the number
of key-value pairs in the post state is greater than or equal to the number of key-value pairs in the
pre state. In fact, this contract is the strongest conjunctive concept (w.r.t to our base predicates)
and it is also the concept that Daikon [Ernst et al. 1999] infers for this case. The contract is simple
and does not have any disjunctions; however, it is not as strong as we would like, because the base
predicates are not expressive enough and because the expression does not use disjunctions.
The main dilemma that we face is in negotiating the precision that disjunctions bring and

overfitting of the example behaviors that prevents effective learning. Our work proposes and
defines a notion of tight contracts to address the preceding dilemma. Intuitively, tight contracts
allow disjunctions when justified. More precisely, a formula 𝜑 that includes the feature vectors
is said to be tight if there is no other formula with one more conditional that captures a stronger
approximation of the feature vectors. Intuitively, we accept formulas as tight if we cannot capture
a smaller semantic space by adding one more disjunction. If there is a formula that has one more
disjunction and is stronger than 𝜑 , we would prefer this formula over 𝜑 . In this sense, the preceding
conjunctive contract (and the one inferred by Daikon) is not tight.
Our learning algorithm also has a predicate synthesis engine that synthesizes new functional

relationships between input and output variables, addressing the problem of inexpressiveness of
the base predicates. On termination, our algorithm synthesizes the tight contract:

(ContainsVal(value)post ∧ ContainsKey(key)post) ∧

(¬ ContainsKey(key)pre ⇒ Countpost=Countpre + 1 ∧ Countpost ≥ 1) ∧

(ContainsKey(key)pre ⇒ Countpost=Countpre ∧ Countpre ≥ 1)
This contract more closely relates the value of Count accounting for how the value changes

depending on whether the dictionary already contained the key or not. The split on the case of
whether the key being inserted already exists is a crucial disjunction to express this contract. The
predicate synthesizer, which synthesizes linear relationships between inputs and an output feature,
is responsible for synthesizing the predicate Countpost = Countpre + 1.
The preceding contract is learned by our tool after 6 rounds of interaction. In each round, the

learner fits the observed behaviors with a tight contract, and the test generator examines the
contract to determine whether it can produce a test that violates the contract. The learner takes
these new tests, enlarging the contract till it is deemed to be safe by the test generator.

3 PROGRAMS AND SAFE CONTRACTS
Methods and Observer Methods. Let us fix a set of types T , including primitive types and classes.

Each type 𝑡 ∈ T is associated with a data domain D(𝑡) that denotes the set of values that
variables/objects of type 𝑡 range over. In the following, we assume that each variable 𝑣 has an
implicit type 𝑡 associated with it, and use D(𝑣) to denote its data domain.

We assume that we have a target method𝑚() with formal input parameters ®𝑝 and formal output
parameters ®𝑞 (typically a single output) that we want to synthesize a contract for. Let us assume
that these two sets of parameters are disjoint, without loss of generality.

Let us also fix a set of pure (i.e., side-effect free) observer methods that have primitive return type.
These methods help query properties of the state of objects. Apart from the target method and
observer methods, we have other methods for classes, including constructors and methods that
mutate the object. These methods implicitly define the set of valid states𝑉 that the object can have,
i.e., an object state is valid if and only if it can be reached by calling these methods.
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Preconditions. For a target method𝑚 with input parameters ®𝑝 and output parameters ®𝑞, a pre-
condition is a property of primitive parameters in ®𝑝 and properties of objects in ®𝑝 as well as the
receiver object that receives𝑚. Consequently, we express preconditions using a logic that refers to
the primitive parameters in ®𝑝 and values of observer methods on objects in ®𝑝 as well as observer
methods applied to the receiver object.
The role of preconditions is to restrict the input parameters and object state on which 𝑚 is

intended to be called. The contracts that we synthesize are with respect to a given precondition. We
do not expect given preconditions to satisfy any particular property. The goal of contract synthesis
is to find a contract for the given precondition. In particular, the contract will ignore inputs that do
not satisfy the precondition. Also, contracts will ignore inputs satisfying the precondition but on
which the method does not terminate or throws an exception.

Preconditions can be written by programmers, or simply set to true (to allow all inputs). They can
also be synthesized automatically, e.g., to prevent themethod𝑚 from throwing an exception [Astorga
et al. 2019].

Contracts. In this paper, given a precondition, we consider the problem of synthesizing the
contract for a method. The contract intuitively represents a summary of the method𝑚, namely
what effect it has on 𝑚’s return and the object manipulated by 𝑚. More precisely, the contract
relates input parameters and the object state before𝑚 is called with the return value of𝑚 and the
object state after𝑚 exits.
Denoting the pre object state before𝑚 is called as 𝑜 and the resulting post object state after𝑚

returns as 𝑜 ′ and the return values as ®𝑞, a contract for𝑚 under a precondition Precond( ®𝑝, 𝑜) is a
predicate 𝐶𝑜𝑛( ®𝑝, 𝑜, ®𝑞, 𝑜 ′). The contract says what kinds of behavior are permitted by𝑚 when𝑚 is
called in a state satisfying the given precondition Precond( ®𝑝, 𝑜) (the behavior of𝑚 when called on
inputs and pre object states not satisfying the precondition is entirely ignored).
Contracts can express properties of objects (whether they be objects in ®𝑝 or ®𝑞 or the pre or the

post object state of the receiver object 𝑜 and 𝑜 ′) using their respective observer methods. Note that
we do not allow contracts to refer directly to the internal state of the objects. This requirement is a
conscious choice to preserve modular design and development, as contracts are meant to be used
by clients who can observe objects through only observer methods.

We can view our contracts also as postcondition assertions. Given a program 𝑃 , we can modify
𝑃 so that it records properties of the pre state in a set of fresh variables before it begins execution;
let us call this transformed program 𝑃 ′. Then we can see a contract 𝐶𝑜𝑛 as an assertion at the exit
of the program 𝑃 ′ that we expect to hold on all input states that satisfy the precondition.
A contract is said to be safe if for every value of input parameters and valid pre object state

satisfying the given precondition, if𝑚 executes and halts, the contract is satisfied by the input and
output parameter values and the pre and post object states, i.e., the Hoare triple {𝑃𝑟𝑒𝑐𝑜𝑛𝑑}𝑃 ′{𝐶𝑜𝑛}
is valid.

4 TIGHT CONTRACTS: STRONG BUT SIMPLE
One of the challenges in learning contracts is to determine which of the multitude of safe contracts
should be synthesized. Safe but trivial contracts such as true are too liberal/weak. The stronger a
contract is, the more it says about a method. However, the strongest contract may not be expressible
in any reasonable logic that we choose, and in this case, defining what the “best” contract should
be is non-trivial.

For example, consider a program that returns an integer 𝑦 that can be and always is an odd prime
number. Assume that our logic is quantifier-free and admits only =, ≤, ≥ relations and arbitrary
constants. Then the strongest contract, which is the set of all odd primes, is not expressible in the
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Fig. 2. Example space where 𝑖𝑡𝑒 (𝑝, 𝑟, 𝑞∧𝑟 ) ⋖ 𝑟 .

logic. Moreover, the sequence of contracts (𝑦 ≥ 3), (𝑦=3 ∨ 𝑦 ≥ 5), (𝑦=3 ∨ 𝑦=5 ∨ 𝑦 ≥ 7), (𝑦=3 ∨ 𝑦=
5 ∨ 𝑦=7 ∨ 𝑦 ≥ 11), . . ., is an infinite sequence of stronger and stronger contracts. Which one do we
synthesize?
In this work, we concentrate on logics that are quantifier free and work by using Boolean

combination of a finite set of atomic formulas (these atomic formulas are themselves synthesized
for each method from an infinite set of formulas, as we describe later in Section 5). Consequently,
we can think of contracts simply as a Boolean formula over a finite set of (synthesized) predicates
𝑅 = {𝑟1, . . . , 𝑟𝑛}.

Decision Trees. From now on, let us assume that contracts are written in the form of decision
trees with conjunctive leaves. More precisely, for a set of Boolean variables 𝑉 , the set of decision
trees with conjunctive leaves is defined by the following grammar:

𝐷𝑇 ::= 𝑖𝑡𝑒 (𝑣, 𝐷𝑇, 𝐷𝑇 ) | 𝐶
𝐶 ::= true | 𝑣 ∧𝐶 | ¬𝑣 ∧𝐶

where 𝑣 ∈ 𝑉 . In the preceding grammar, “ite” terms stand for “if-then-else” terms, which evaluate to
the second or third terms depending on whether the first formula is true or false, respectively. Note
that the leaves are conjunctions of predicates and negated predicates. We refer to such formulas
simply as decision trees in the sequel.
For a decision tree 𝜑 , let 𝑑 (𝜑) denote the number of conditionals in the decision tree—more

precisely, the number of subterms of 𝜑 of the form 𝑖𝑡𝑒 (·, ·, ·). Note that for a purely conjunctive
formula 𝜑 , 𝑑 (𝜑) = 0.

Also, let J𝜑K denote the semantic space of valuations that satisfy 𝜑 . We say a formula 𝜑 is stronger
(or strictly stronger) than 𝜑 ′ if J𝜑K ⊆ J𝜑 ′K (or J𝜑K ⊂ J𝜑 ′K, respectively).

For example, consider the space depicted in Figure 2, where the strongest contract is depicted by
the dark-blue shaded area, and three predicates 𝑝 , 𝑞, and 𝑟 each divide the space into two (the area
to the left denoting the space satisfied by each predicate). If we allow no conditionals, then the
tightest conjunctive formula that captures the contract is 𝑟 , as the contract has states that satisfy
(and do not satisfy) 𝑝 as well as states that satisfy (and do not satisfy) 𝑞. However, if we are allowed
one conditional, we find that the formula 𝑖𝑡𝑒 (𝑝, 𝑟, 𝑞∧𝑟 ) (shown as the light-blue shaded region
below) is a safe contract and is stronger than the formula 𝑟 .

A Notion of Tight Contracts. In general, more conditionals in decision trees allow capturing
smaller semantic spaces. However, it is also true that formulas with a large set of disjunctions can
cause overfitting, making learning a safe contract take many rounds, and can lead to divergence.
We say a formula 𝜑 is simpler than 𝜑 ′ if it has fewer conditionals, i.e., 𝑑 (𝜑) ≤ 𝑑 (𝜑 ′). There is

hence a natural partial order ⪯ between formulas: 𝜑 ⪯ 𝜑 ′ iff
• J𝜑K ⊆ J𝜑 ′K (i.e., 𝜑 is stronger than 𝜑 ′), and
• 𝑑 (𝜑) ≤ 𝑑 (𝜑 ′) (i.e., 𝜑 is simpler than 𝜑 ′).

How do we define a notion of tightness of contracts for capturing strong and simple contracts?
One possibility is that we ask for a Pareto optimal contract based on the preceding ordering. That is,
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Fig. 3. Architecture for synthesizing safe and tight contracts modulo a test generator

we could ask for a minimal safe contract with respect to the preceding ordering. However, doing so
is not always desirable. For example, a technique could learn only conjunctive formulas (i.e., have
no conditionals) and learn the tightest conjunctive contract. The learned contract would be minimal
by the preceding ordering, but is not necessarily good (as shown by the example in Figure 2, where
the tightest formula with no conditionals is 𝑟 , as well as the illustrative example in Section 2).

We propose a novel notion of tightness of contracts to combine how strong a contract is and how
simple it is. Intuitively, if 𝜑 is a safe contract, but there is a contract that has one more conditional
than 𝜑 and captures a smaller space, then we would reject 𝜑 as being tight (preferring the stronger
formula with one more disjunct). However, if there exists no such stronger contract with an equal
number or one more conditionals, then we declare 𝜑 a tight contract.

For instance, in the example in Figure 2, 𝑟 is not a tight contract as with one more conditional we
find that the formula ite(𝑝, 𝑟, 𝑞∧𝑟 ) is a safe contract that is stronger than 𝑟 . Moreover, it is easy to
see that ite(𝑝, 𝑟, 𝑞∧𝑟 ) is tight, as there is no formula with two conditionals that defines a stronger
and safe contract.

We define the following “immediate ordering” ⋖ on formulas: 𝜑 ⋖ 𝜑 ′ iff (a) 𝑑 (𝜑) ≤ 𝑑 (𝜑 ′) + 1 and
J𝜑K ⊂ J𝜑 ′K.
Intuitively, 𝜑 ⋖ 𝜑 ′ if 𝜑 uses at most one more disjunct than 𝜑 ′ and captures a strictly smaller

space than 𝜑 does. For the example in Figure 2, 𝑖𝑡𝑒 (𝑝, 𝑟, 𝑞∧𝑟 ) ⋖ 𝑟 , but 𝑖𝑡𝑒 (𝑝, 𝑖𝑡𝑒 (𝑝, 𝑟, 𝑞∧𝑟 ), 𝑟 ) ⋖̸ 𝑟 .
Note that ⋖ is not necessarily a partial order nor a preorder (it is not transitively closed, in general),
but is acyclic. We are now ready to define tight formulas.

Definition 4.1 (Tight formulas). Let 𝑅 be a finite set of Boolean variables and let 𝑆 be a set of
Boolean valuations of 𝑅. We say a formula 𝜑 is a tight approximation of 𝑆 (or simply tight) if

• J𝜑K ⊇ 𝑆 and
• There is no formula 𝜑 ′ such that 𝜑 ′ ⋖ 𝜑 and J𝜑 ′K ⊇ 𝑆 .

The above says that a formula 𝜑 is tight with respect to 𝑆 if it overapproximates 𝑆 and there is
no stronger formula with at most one more conditional that overapproximates 𝑆 .
We propose that the learning algorithm returns tight formulas for a given set of observed

behaviors.

5 LEARNING TIGHT CONTRACTS MODULO A TEST GENERATOR
In this section, we describe our online learning architecture for synthesizing tight contracts (Defini-
tion 4.1) that are safe with respect to a test generator. We also present the core learning algorithm
that learns tight concepts from sample behaviors.
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5.1 Architecture for Online Learning of Contracts Safe Modulo a Test Generator
Our architecture, depicted in Figure 3, pairs a test generator (with fixed resources and assumed
to be deterministic) with a contract synthesizer that works in rounds of communication. In each
round, the contract synthesizer takes as input the set of input-output behaviors, denoted as 𝐹𝑉 ,
exposed by the test generator thus far, and proposes a conjecture contract 𝜑 that includes 𝐹𝑉 .
The test generator then checks whether 𝜑 is an unsafe contract by finding input-output behaviors
that witness that 𝜑 is not safe— i.e., the test generator finds valid input states that satisfy the
precondition of the target method such that the execution of the method on this state halts and the
resulting output state does not satisfy the contract 𝜑 . The generated input-output behaviors are
accumulated in 𝐹𝑉 for the contract synthesizer to use in the next round. This process continues
until the test generator is unable to find a witness that shows 𝜑 is unsafe. At this point, we can
obviously deem 𝜑 to be safe modulo the test generator and return 𝜑 as the learned contract.
In each round, the learner synthesizes, simultaneously, a set of predicates 𝑅 (being larger than

a set of base predicates 𝑅𝑏 and capturing more accurate input-output relationships) as well as a
contract 𝜑 such that 𝜑 is tight with respect to 𝑅 and the sample behaviors 𝐹𝑉 . This algorithm is
the heart of our technical contribution and is next described in Section 5.2. Notice that when the
algorithm terminates, we are guaranteed to have synthesized a tight contract that is safe modulo
the test generator. We assume that the test generator is deterministic (when it uses randomization,
we will fix random seeds) and has no persistent state between calls.

In the preceding architecture, the test generator is an oracle that can potentially be replaced by
a complete verifier that truly checks whether the conjectured contracts are safe. However, what
we crucially need are systems that also return counterexamples when contracts are unsafe. Sound
verification engines typically use some form of abstraction and do not provide such counterexamples
(for programs with recursion), and tools that can provide counterexamples are typically incomplete
ones that can be seen as test generators. Our learning architecture and implementations are hence
best understood to be meant to particularly work with test generators.

5.2 Synthesizer of Tight Contract (Learner)
We next describe one of our main technical contributions: our learning algorithm for tight contracts.
Given a set of Boolean and integer features, a set of base predicates 𝑅𝑏 , and a set of feature vectors
𝐹𝑉 , the goal of our algorithm named SynthContract is to synthesize a contract 𝜑 (a quantifier-
free Boolean combination of predicates in 𝑅) that is tight with respect to 𝐹𝑉 . SynthContract
synthesizes a larger set of predicates 𝑅 ⊇ 𝑅𝑏 (Definition 4.1). The newly synthesized predicates are
over a logic L that is infinite, and in our case arbitrary linear arithmetic expressions over integer
features. This algorithm is the contract synthesizer (see Figure 3). We describe the algorithm as it
operates in a single round.

The (passive learning) algorithm iterates using the following two sub-algorithms till it reaches a
fixed point and finds a tight decision tree with respect to a set of predicates 𝑅:
SynthStrongerDT constructs a tight decision tree with respect to 𝐹𝑉 and the current set of predi-

cates 𝑅. Note that this notion of tightness (Definition 4.1) is based on a Boolean abstraction
of the predicates.

SynthPredicate grows the set of predicates 𝑅 by synthesizing new predicate expressions over
the logic L at a leaf of the decision tree to better capture the samples that flow to that leaf.
In particular, the sub-algorithm synthesizes expressions at leaves that precisely characterize
functional relationships of the output state with respect to the input state.

We describe these sub-algorithms later ; we first describe the high-level algorithm of SynthContract,
which orchestrates the construction by calling the preceding sub-algorithms.
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1 Function SynthContract (𝑏, 𝑖, 𝑅𝑏 , 𝐹𝑉 ) :
2 Input 𝑏, 𝑖: Set of Boolean and integer features
3 Input 𝑅𝑏 : Set of (base) predicates over 𝑏 and 𝑖
4 Input FV : Set of feature vectors over 𝑏 and 𝑖
5 Output 𝑅: 𝑅 = 𝑅𝑏 ∪ 𝑅𝑛 , where 𝑅𝑛 is a set of new predicates over 𝑖 , including all predicates returned by

SynthPredicate on each leaf of 𝜙
6 Output 𝜙 : Formula over 𝑅 such that if S is the set of Boolean feature vectors obtained by evaluating 𝑅 on FV,

then 𝜙 is a tight decision tree wrt S
7 Parameterized by : SynthPredicateDT, SynthStrongerDT

// B is a set of Boolean variables, one for each predicate in 𝑅𝑏
8 B← {𝑏𝑟 | 𝑟 ∈ 𝑅𝑏 }
9 S← Set of Boolean feature vectors obtained by evaluating 𝑅𝑏 on FV ; S is a feature vector over B

10 𝑅← 𝑅𝑏
11 𝜙 ← true

//𝜓𝐵 and𝜓 ′
𝐵
will be trees over Boolean variables 𝐵

12 𝜓𝐵 ← true,𝜓 ′
𝐵
← true

// k is the number of conditionals in the constructed decision tree
13 k← 0
14 while true do

// find a strongest tree with k conditionals
15 do

16 𝜓𝐵 ←𝜓 ′
𝐵

17 𝜙 ← ReplaceBoolWithPredicate(𝜓𝐵, 𝐵, 𝑅)
18 𝜙 , Q← SynthPredicateDT(𝜙, 𝑖, 𝐹𝑉 )
19 R← R

⋃
Q

20 S← S ⊕ Q // Expand S by eval Q on FV
21 B← B ∪ {𝑏𝑞 | q ∈ Q}
22 𝜓𝐵 ← ReplacePredicateWithBool(𝜙 , B, R)
23 𝜓 ′

𝐵
← SynthStrongerDT(S, B,𝜓𝐵 , k)

24 while (𝜓 ′
𝐵
≠ 𝜓𝐵 )

// check whether there is a stronger tree with k+1 conditionals
25 𝜓 ′

𝐵
← SynthStrongerDT(S, B,𝜓𝐵 , k+1)

// If there is not one, we return the current tree; otherwise, we increment k
26 if 𝜓 ′

𝐵
== 𝜓𝐵 then

27 return 𝑅,𝜙 ;
28 k← k+1

29 Function SynthPredicateDT(𝐶𝐷𝑇 , 𝑓𝐼 , 𝐹𝑉 ):
30 Input𝐶𝐷𝑇 : A decision tree
31 Input 𝑓𝐼 : Set of integer features
32 Input 𝐹𝑉 : Set of of feature vectors
33 Output 𝐷𝑇 : Decision tree with newly synthesized predicates at leaves
34 Output 𝑃 : Set of synthesized features

35 P ← ∅
36 DT ← CDT
37 foreach leaf 𝑙 in DT do

38 FV ′← the set of feature vectors in FV that flow to l
39 Q← SynthPredicate (𝑓𝐼 , FV ′)
40 P ← P ∪ Q
41 Add the conjunct

∧
Q to the formula at the leaf l of DT

42 return DT, P

Fig. 4. The Tight Contract Synthesis Algorithm
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The SynthContract algorithm (Figure 4):We fix a set of integer features 𝑖 and Boolean features
𝑏. These integer and Boolean features are drawn from input parameters of the method under
analysis, return variables, integer and Boolean observer methods evaluated on input objects, the
receiver object (both pre and post), and returned objects.

The algorithm takes a set of base predicates 𝑅𝑏 over 𝑏 and 𝑖 . The caller constructs the set of base
predicates 𝑅𝑏 that include the Boolean features 𝑏 as well as a bounded set of simple predicates over
integer features (e.g., 𝑥 ≥ 0, 𝑥 = 0, 𝑥 ≤ 0, 𝑥 = 𝑦, 𝑥 ≤ 𝑦, where 𝑥 and 𝑦 are integer features in 𝑖).
The algorithm takes as input (Lines 2–4) the sets 𝑏, 𝑖 , 𝑅𝑏 , as well as a set 𝐹𝑉 of feature vectors,

where each vector represents values of features 𝑏 and 𝑖 . The algorithm needs to produce a set 𝑅𝑛 of
newly synthesized predicates and a decision tree 𝜙 (over 𝑅𝑏 ∪ 𝑅𝑛) that is tight with respect to 𝐹𝑉

and 𝑅𝑏 ∪ 𝑅𝑛 . These new predicates will be synthesized using the routine SynthPredicate, which
is described later, at each leaf.

SynthContract works as follows. It works in iterations (the outer loop, Lines 14–28), where
in each iteration, it tries to find a tight decision tree with 𝑘 conditionals, incrementing 𝑘 in each
round. In each such iteration, for the fixed 𝑘 and a current decision tree𝜓𝐵 , the inner loop in Lines
15–24 will try to find a decision tree stronger than𝜓𝐵 with 𝑘 conditionals, and moving to it till a
fixed point is reached. When exiting this loop, we know that there is no decision tree stronger than
𝜓𝐵 with 𝑘 conditionals. We then check whether there is a stronger decision tree than𝜓𝐵 with 𝑘 + 1
conditionals (Line 25). If not,𝜓𝐵 is in fact tight, and we return it. Otherwise, we take the stronger
decision tree over 𝑘 + 1 conditionals as the current decision tree, increment 𝑘 and iterate. Note that
when we increment 𝑘 , we do not know that there is no tight decision tree with 𝑘 conditionals—all
we know is that one strongest decision tree that we constructed with 𝑘 conditionals is not tight.

The loop in Lines 15–24 does more than synthesizing stronger decision trees–it also synthesizes
new predicates at leaves of decision trees, accumulating these predicates over time. We take
the current decision tree 𝜓𝐵 and synthesize predicates at each of its leaves (Line 18, which calls
SynthPredicateDT, which in turn calls SynthPredicate on all leaves of the decision tree; see the
bottom of Figure 4 for the procedure SynthPredicateDT). We then ask whether there is a decision
tree that is stronger than𝜓𝐵 and uses only 𝑘 conditionals over the newly expanded set of predicates
(Line 23). This routine returns a stronger decision tree, if one exists, or returns𝜓𝐵 if it does not.

The algorithm uses multiple procedures. The procedure ReplacePredicateWithBool does the
Boolean abstraction, replacing predicates in 𝑅 with a corresponding Boolean variable in 𝐵, while
the procedure ReplaceBoolWithPredicate does the reverse, replacing Boolean variables with
their corresponding predicate.
The algorithm also calls the procedure SynthPredicateDT, which is given in Lines 29–42 in

Figure 4. This procedure synthesizes predicates at the leaves of a decision tree. The routine first
computes the set of feature vectors that flow to the leaves (Line 38). This set is the set of feature
vectors that satisfy the conditionals corresponding to the path from the root to this leaf. For each
leaf, the corresponding feature vectors are passed to SynthPredicate to synthesize new predicates
that more accurately capture functional relationships between the output state and input state for
the feature vectors that flow to that leaf. The procedure returns the new decision tree where the
leaves have new conjuncts corresponding to newly synthesized predicates that hold at each leaf
(Line 41).

The algorithm calls two procedures SynthStrongerDT and SynthPredicate, which do the
following:

SynthStrongerDT: The problem here is, given a current decision tree and 𝑘 , to find a strictly
stronger decision tree (with 𝑘 conditionals) that includes all the samples from 𝑆 . This finding
process requires searching through all possible decision trees with 𝑘 conditionals, and doing
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an inclusion check, between the current decision tree and the tree to be synthesized and vice
versa. The inclusion check itself is a validity problem, and hence it turns out that finding
such a tree can be formulated as a 2QBF problem. Section 5.3 below details this formulation.

SynthPredicate: This routine is called to find functional relationships between the input and
output behaviors in a given subset of feature vectors 𝑆 . The expressions that we synthesize
are in L, the logic of linear integer arithmetic. Section 5.4 details this formulation.

We express both of the preceding problems as syntax guided synthesis (SyGuS) [Alur et al. 2015]
problems and solve them using SyGuS solvers [Alur et al. 2017; Reynolds et al. 2019]. A SyGuS
specification is a pair consisting of a grammar, G, and logical formula ∃𝑓 ∀®𝑥 𝜑 (𝑓 , ®𝑥), interpreted
over a theory 𝑇 . A solution for such a synthesis specification is an expression 𝑒 belonging in the
language defined by the grammar G such that the logical formula still holds when we substitute
the synthesized expression 𝑒 for 𝑓 , i.e. ∀®𝑥 𝜑 (𝑒/𝑓 , ®𝑥) is valid in 𝑇 .
Correctness of SynthContract: It is easy to see that the SynthContract algorithm is correct
when it terminates. The decision tree output is guaranteed to include 𝑆 and be tight with respect to
𝑆 and the returned set of predicates 𝑅.

The argument that it terminates (assuming that the SynthStrongerDT and SynthPredicate
procedures terminate) is more tricky. The crucial property to note is that the SynthPredicate
procedure is called on feature vectors that flow to the leaves of some decision tree. Since the number
of subsets of feature vectors is finite, this procedure is called only finitely many times, and hence
the total number of synthesized predicates over L is finite (for a given set of feature vectors).
Consequently, the number of decision trees over such predicates is finite. Furthermore, since the
algorithm always synthesizes and moves to decision trees that are successively stronger, across
both the outer and inner loops in Figure 4, the algorithm always terminates.

One subtle point to note is that the algorithm is not guaranteed to find the tightest decision tree
over the smallest number of conditionals. When the algorithm finds a strongest decision tree with
𝑘 conditionals, and finds a stronger decision tree with 𝑘 + 1 conditionals (Line 25), and increments
𝑘 , we are not guaranteed that there is no tightest decision tree with 𝑘 conditionals (we just know
that the current decision tree is not tight). However, the algorithm does heuristically try to return
decisions trees with a small number of conditionals (since it increments 𝑘 gradually).

5.3 Synthesizing Stronger Decision Trees
We next describe the SynthStrongerDT algorithm, which synthesizes stronger decision trees with
𝑘 conditionals than a given decision tree. The inputs to the routine are a set of Boolean feature
vectors 𝑆 (feature vectors of length 𝑛), a set of Boolean variables 𝐵 = {𝑏1, . . . , 𝑏𝑛},𝐶𝐷𝑇 , the “current”
decision tree (over 𝐵) that includes 𝑆 , and 𝑘 ∈ N>=0. The 𝑖’th element in a feature vector corresponds
to the Boolean variable 𝑏𝑖 , and hence each feature vector is a valuation of 𝐵. Our goal is to find a
decision tree 𝐷𝑇 (if one exists) that has 𝑘 conditionals, includes 𝑆 , and captures a strictly smaller
space than 𝐶𝐷𝑇 does (i.e., 𝐷𝑇 ⇒ 𝐶𝐷𝑇 holds and 𝐶𝐷𝑇 ⇒ 𝐷𝑇 does not hold).

For a feature vector 𝑠 ∈ 𝑆 , we denote by 𝑠 [𝑖] (where 1 ≤ 𝑖 ≤ 𝑛), the 𝑖’th element of the vector. To
accomplish this goal, we formulate a synthesis problem that asks whether there is a decision tree
with four requirements: (1) it has at most 𝑘 conditionals (branching inner nodes in the decision
tree), (2) it includes all the feature vectors in 𝑆 , and (3) the decision tree captures a smaller semantic
space than𝐶𝐷𝑇 does (i.e.,𝐷𝑇 ⇒ 𝐶𝐷𝑇 holds), and (4) there is one witnessing valuation that belongs
to 𝐶𝐷𝑇 but not to 𝐷𝑇 . If all four requirements can be satisfied, this routine returns this newly
synthesized tree.
We formulate the above problem as a SyGuS problem. Note that the preceding requirement

(3) is an implication constraint, and hence expressed using universal quantification. Since the
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constraints are Boolean, we can also think of this problem as a 2-QBF satisfiability problem of the
form ∃®𝑥 ∀®𝑦 𝜑 ( ®𝑥, ®𝑦).

The existential variables ®𝑥 consist of two sets of variables, ®𝑐 and ®𝑤 . The variables ®𝑐 are 𝑘 · |𝐵 | in
number, and denote the various choices for the conditionals in the decision tree. The variables in ®𝑐
are 𝑐 𝑗

𝑖
, which stands for whether the 𝑗 ’th conditional in the decision tree (chosen in some order,

say infix order) is filled with the 𝑖’th Boolean variable (we require for each 𝑗 , precisely one 𝑐 𝑗
𝑖
to be

true). The vector ®𝑤 is of length 𝑛, and is meant to witness a valuation of the Boolean variables in 𝐵

for showing that the synthesized formula is strictly stronger than the current decision tree 𝐶𝐷𝑇
((d) above). More precisely, we will require that 𝐶𝐷𝑇 include ®𝑤 (seen as a valuation of 𝐵) while the
synthesized decision tree 𝐷𝑇 excludes it.
We do not capture the precise conjunction of Booleans at the leaves of the decision tree using

variables. Since we are aiming to synthesize strong decision trees, we can assume that at each leaf
we have the strongest conjunction of Boolean variables that hold on the set of feature vectors that
flow to the leaf.

We hence consider only such decision trees that have the tightest conjunction at the leaves. For a
set of Boolean feature vectors 𝑆 , the tightest conjunct at a leaf of a decision tree whose conditionals
are fixed is unique— it is precisely the conjunction of all Boolean variables 𝑏𝑖 ∈ 𝐵 such that for
every sample 𝑠 ∈ 𝑆 that reaches the leaf (i.e., every sample that satisfies the conditions that lie
along the path to that leaf in the decision tree) has 𝑠 [𝑖] to be true. Note that such a decision tree
automatically includes all the samples 𝑠 ∈ 𝑆 , by design (i.e., satisfies the requirement (b) above).
Given a shape of a decision tree and conditionals that inhabit its interior nodes (such as

𝑖𝑡𝑒 (𝑏3, 𝑖𝑡𝑒 (𝑏5, ·, ·)) or 𝑖𝑡𝑒 (𝑏2, ·, 𝑖𝑡𝑒 (𝑏1, ·, ·))), the decision tree is uniquely fixed as the leaves are
the tightest conjuncts. This is why the existential variables ®𝑐 combined with the shape of the tree
entirely determine the tree. Hence, for a given shape ℎ of the decision tree, we can write a formula
evalℎ (®𝑐, ®𝑣) that essentially checks whether the decision tree with conditionals chosen according to
the choice determined by ®𝑐 and with tightest conjuncts at leaves includes a valuation ®𝑣 over 𝐵. The
formulation of evalℎ is a bit technical, and we postpone its definition. Let us assume that we have
this function defined logically.
We can now state the synthesis problem using the 2-QBF formula ∃®𝑐 ∃ ®𝑤 𝜑 where 𝜑 has the

following conjuncts:

• ∀®𝑢. ( evalℎ (®𝑐, ®𝑢) ⇒ 𝐶𝐷𝑇 (®𝑢) )
In other words, the synthesized decision tree defines a space that is a subset of the space
defined by the current decision tree (condition (c)). Note that the universal quantification
over ®𝑢 is necessary to express this inclusion criterion.
• 𝐶𝐷𝑇 ( ®𝑤) ∧ ¬evalℎ (®𝑐, ®𝑤)
This conjunct says the valuation𝑤 witnesses that the synthesized decision tree excludes at
least one valuation (namely ®𝑤 ) that is included by the current decision tree (condition (d)).

By enumerating various shapes ℎ of decision trees with 𝑘 conditionals and taking the disjunction
of these decision trees, we formulate the synthesis problem for tighter decision trees than 𝐶𝐷𝑇

that use 𝑘 conditionals.
We then give this ∃∗∀∗ formula to a solver in order to synthesize stronger decision trees. While

we can use any 2-QBF solver, we use a SyGuS solver CVC4 [Reynolds et al. 2019] for uniformity
with other synthesis tasks in our tool. If the solver gives a valuation for ®𝑐 , we create a decision
tree using the shape and by computing the tightest conjunct at each leaf. It is easy to see that this
procedure terminates and is correct.
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Formulating evalℎ :Wenow showmore details on the SyGuS encoding by giving the formulation
of the function evalℎ (®𝑐, ®𝑢).
Let us first assume that for each leaf 𝑙 in the shape ℎ, we have a function expressed in logic

𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (®𝑢, ®𝑐, ®𝑙) that determines whether the valuation ®𝑢 reaches the leaf 𝑙 in the decision tree
determined by ®𝑐 . This is expressed in logic easily: we take the path 𝜋 from the root to 𝑙 , and for
each internal node 𝑛 along 𝜋 , assert that if ®𝑐 fills the node 𝑛 with the predicate 𝑏𝑖 , then 𝑢 [𝑖] is true
iff the path 𝜋 takes the “true” direction from 𝑛.

We can now formulate evalℎ as

eval(®𝑐, ®𝑣) :
∧

leaves 𝑙

Reaches(®𝑣, ®𝑐, 𝑙) ⇒
∧
𝑖

©«¬𝑣 [𝑖] ⇒
∨

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑠 | 𝑠 [𝑖 ]=𝐹
𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑠, ®𝑐, 𝑙)ª®¬


where 𝑖 ranges from 1 to the number of Boolean variables in feature vectors.

The above says that ®𝑣 evaluates to true in the decision tree defined by ®𝑐 provided the leaf 𝑙 that
®𝑣 reaches has the following property: for every 𝑖 such that ®𝑣 is false, there is at least one sample
feature vector 𝑠 that has its 𝑖’th variable set to false that reaches the leaf 𝑙 .
The argument of why the above is correct is as follows. Assume ®𝑣 reaches the (unique) leaf 𝑙

and let 𝑖 be an index. If 𝑣 [𝑖] is true, then 𝑣 will satisfy 𝑏𝑖 , in case it is mentioned in the conjunct at
𝑙 . If 𝑖 is such that 𝑣 [𝑖] is false, then in order for ®𝑣 to be accepted by the decision tree, the implicit
conjunct at the leaf 𝑙 should not mention 𝑏𝑖 . Recall that 𝑏𝑖 is not mentioned in the implicit conjunct
at 𝑙 iff there is some sample 𝑠 that flows to the leaf 𝑙 and has its 𝑖’th Boolean variable set to false.
Hence we require that there is at least one sample 𝑠 , with 𝑠 [𝑖] set to false, that reaches the leaf 𝑙 .

5.4 Synthesizing Predicates
We describe the algorithm SynthPredicate for synthesizing predicates. The inputs to this routine
are 𝐶𝐷𝑇 , a set of integer features 𝑖 , and a set of feature vectors 𝐹𝑉 , where 𝐶𝐷𝑇 is the current
decision tree over 𝑅 that expresses a contract that includes 𝐹𝑉 (i.e., 𝐶𝐷𝑇 holds true under every
feature vector in 𝐹𝑉 ). The goal of this routine is to synthesize predicates that express functional
relationships between inputs and output features. More precisely, we synthesize functions of the
integer features of the output state in terms of the integer features of the input state using expression
synthesis techniques such as SyGuS. For each integer feature of the output state 𝑜 (which can either
be a return variable of type integer or the value of an observer method on an output object that
returns an integer), we ask whether 𝑜 can be realized as a function of the integer features of the pre
state (which includes input parameters of integer type and values of observer methods on input
objects, including the receiver object, i.e., written as this).
We specifically aim to discover functional relationships expressed in a logic of linear integer

arithmetic. Let us fix the following grammar G𝐼 of linear integer arithmetic expressions over the
set of input integer features 𝐼 ⊆ 𝑖:

𝐸 ::= 𝑖 | 𝑐 | 𝐸 + 𝐸 | 𝐸 − 𝐸

where 𝑖 ∈ 𝐼 and 𝑐 ∈ Z. Let ®𝐼 denote an ordering of 𝐼 .
We now want to synthesize, for any output integer feature 𝑜 , a function F (®𝐼 ) expressible in the

grammar G𝐼 so that for every feature vector fv ∈ 𝐹𝑉 , fv(𝑜) = F [fv[®𝐼 ]/®𝐼 ]. In other words, we want
the output value of 𝑜 in each feature vector to be equal to the function computed by F using the
input values of the feature vector.
We use SyGuS solvers [Alur et al. 2015, 2017; Reynolds et al. 2019] to find such arithmetic

expressions. Note that a SyGuS (syntax guided synthesis) specification consists of a grammar and a
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logical formula, (G, 𝜑 ( ®𝑥)) interpreted over a theory𝑇 . A solution for such a synthesis specification
is an expression 𝑒 such that 𝑒 belongs to the language defined by the grammar G and such that
∀®𝑥 𝜑 ( ®𝑥) is valid in 𝑇 .

Note that we do not need to use the quantified variables ®𝑥 , and instead we use a formulation of
the form: ∧

fv∈𝐹𝑉
fv(𝑜) = 𝑒 [fv[®𝐼 ]/®𝐼 ]

where 𝑒 is constrained to belong to the grammar G𝐼 . Note that the preceding specification has
only constant integers and the function symbol 𝑒 . We then use SyGuS solvers (see Section 6 for
specific ones) to synthesize these expressions. Note that the above can be extended to any logic
of quantifier-free expressions, say non-linear arithmetic, etc. as long as we have a synthesizer for
expressions that fit input-output specifications.

When evaluating our tool, we synthesize the predicate, 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠𝑡 = 𝐶𝑜𝑢𝑛𝑡𝑝𝑟𝑒+1, for the method
Setter in Figure 1. In previous work that evaluated Daikon for synthesizing contracts [Polikarpova
et al. 2009], the authors in fact argue that the inability ofDaikon to find such functional relationships
is one of the key drawbacks of Daikon that prevent it from learning strong contracts.

5.5 Correctness
We formalize correctness, parameterized over the procedure SynthPredicate for synthesizing
predicates in any logic L.

Theorem 5.1. Let the procedure SynthPredicate be deterministic and terminating. Then the
algorithm SynthContract always terminates and produces a set of predicates 𝑅 ⊇ 𝑅𝑏 and a decision
tree 𝐷𝑇 over 𝑅 that is tight with respect to 𝑅 and the given feature vectors. Furthermore, the set of
predicates 𝑅 will include all predicates returned by SynthPredicatewhen called on the feature vectors
that flow to each leaf of the returned decision tree 𝐷𝑇 .

We emphasize that the termination argument works for learning a tight concept in any round and
works for any grammar for producing predicates (the grammar can generate an infinite language
and is not restricted to be linear arithmetic). All that we need to assume is that predicate synthesis is
deterministic and terminating. Note however that the final contract learned and its quality depend
on many aspects— the tests generated by the test generator, the predicates synthesized, the decision
trees synthesized by synthesis engines, etc.

Note that our algorithm is nontrivial because not only does it find a decision tree that describes
the behavior (this is what many related approaches using decision trees do) but it finds a provably
tight decision tree, which calls for an iterative procedure, whose termination in each round is subtle
and is argued in the Correctness of SynthContract subsection of Section 5.2.

6 EVALUATION
We implement our learning architecture in a tool named Precis. We adapt an industrial test
generator Pex [Tillmann and De Halleux 2008] as the testing oracle. The contract synthesizer
component adapts the CVC4SY [Reynolds et al. 2019] SyGuS solver to synthesize trees and the
enumeration-based synthesis solver [Alur et al. 2015] to synthesize predicates.
To assess the effectiveness of our approach, we investigate the following six main research

questions (RQs), where RQ4, RQ5, and RQ6 are ablation studies:
• RQ1: How effectively can Precis learn safe contracts?

• RQ2: How effectively can Precis learn strong contracts?
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• RQ3: How effective is Precis in comparison to Daikon𝐴𝐿
(Daikon [Ernst et al. 1999]

adapted to an active learning setting paired with a test generator; see Section 6.2 for

details)?

• RQ4: How much does the use of disjunctions (decision trees) contribute to the overall

effectiveness of Precis?
• RQ5: How much does the use of predicate synthesis contribute to the overall effective-

ness of Precis?
• RQ6: How effective is the choice of 1-tightness for contract synthesis? In particular,

would 2-tight contracts be much better?

6.1 Evaluation Subjects
We evaluate our approach on the large projects studied in previous work [Astorga et al. 2019] (for
precondition synthesis). We conduct our evaluation on a total of 52 methods from 7 classes; 30 of
these methods are from the .NET Runtime open source project and the remaining 22 are from the
QuickGraph open source project. Table 1 shows the projects and number of methods used in our
evaluation.

.NET Runtime
2 is an open source implementation of the .NET runtime, libraries, and shared

host, and powers the .NET Framework3 across major systems (MacOs, Windows, and Ubuntu). We
evaluate on five commonly used classes from the foundational libraries, namely Stack, Queue, Set,
Map, and ArrayList. QuickGraph4 is a popular C# open source project. It provides mature imple-
mentations of graph-based data structures and algorithms. We evaluate on two key classes namely
UndirectedGraph and BinaryHeap. We do not include classes from the CodeContract [Cousot et al.
2013] and HOLA [Dillig et al. 2013] benchmarks studied in previous work [Astorga et al. 2019]
because these benchmarks are not representative of object-oriented programs and in fact do not
manipulate objects.

6.2 Evaluation Setup
Test Generators. For the purpose of synthesizing contracts in our evaluation, our Precis tool
uses the default values of configuration parameters in Pex. For the purpose of evaluating RQ1, we
configure Pex-High, a version of Pex with higher resources.
The relevant configurations for PEX include Timeout (default: 120 seconds), MaxConstraint-

SolverTime (default: 2 seconds), MaxRunsWithoutNewTest (default: 100), and MaxRuns (default:
100). For Pex-High, these values are increased to 500, 10, 2147483647, and 2147483647, respectively.
For RQ1, we also use Randoop [Pacheco and Ernst 2007] with its timeout option set to 600 seconds
(default: 120). We want to have high confidence that our synthesized contracts are truly safe so we
allow Randoop to run for a longer time compared to Pex.

Making these test generators effective typically requires supplying them with factory methods.
We implement these factory methods (also known as data generators) manually to create objects of
a specific type from primitive types or objects of other types. We give all the test generators the
same factory methods. There is a line of work that helps developers write factory methods (i.e.,
data generators) [Gligoric et al. 2010; Nie et al. 2020].

Daikon
𝐴𝐿 . Since Daikon works usually as a passive learner, we enhance Daikon to produce a

new tool Daikon𝐴𝐿 that works in an online learning setting interacting with the test generator

2https://github.com/dotnet/runtime
3https://docs.microsoft.com/en-us/dotnet/core/introduction
4https://github.com/YaccConstructor/QuickGraph
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Table 1. Statistics on the number of methods of each class, the average number of features per method, and
the average number of base predicates per method

ArrayList BinaryHeap Dictionary HashSet Queue Stack Un. Graph

Methods 9 7 7 4 5 5 15

Avg.#Features/method 4.70 4.71 3.86 3.25 3.00 3.75 7.74

Avg.#Base-Predicates

/method 164.6 299.5 53.9 37.8 75.4 75.4 220.6

Pex. We build Daikon𝐴𝐿 using the C# front end for Daikon, namely Celeriac [Schiller et al. 2014].
We also configure Daikon𝐴𝐿’s template language to use only client-visible variables to instantiate
its templates.

Preconditions. For our evaluation, we annotate each method for evaluation with its precon-
dition. We use the Proviso tool developed and released by Astorga et. al [Astorga et al. 2019] to
derive preconditions automatically. In cases where Proviso does not converge to a “truly ideal pre-
condition” (which is their notion of a correct precondition), we manually improve the precondition
derived by Proviso.

Feature Selection. Our approach and Daikon𝐴𝐿 require a set of integer and Boolean features,
described in Section 5.2, to build a set of base predicates. Features are various combinations of
Boolean and integer observer methods applied to formal parameters and return variables (including
objects of any type) of the method under analysis. We use the observer methods that are pure
methods in the class and static observer methods natively available in C#. Parameter and return
variables of integer and Boolean types are also features. We omit any observer methods whose
precondition is false. This case can occur when the precondition of the method under analysis
contradicts the observer method’s precondition. The average number of the features and base
predicates, per method, used in our evaluation is listed in Table 1.

6.3 RQ1: How effectively can Precis learn safe contracts?
Our tool is designed such that the returned synthesized contract is always safe with respect to

the test generator. The purpose of RQ1 is to investigate the effectiveness of Precis in generating
truly safe contracts, i.e., contracts that include all possible input-output behaviors (independent of
the test generator). We employ two mechanisms to check for safety beyond the test generator used
to synthesize the contract. Our first safety check uses two other test generators to find violations
and our second safety check relies on manual inspection. For the first check, we use Randoop (a
random test generator) and Pex-High (Pex with more resources). The manual inspection is done
on only contracts on which the test generators cannot find any violation of safety. The average
learning time for our tool ranges from as little as 2 minutes per method in a class to as long as 5
hours per method per class. More efficient algorithms for synthesizing tight contracts remain as a
valuable future direction, not the focus of this work.

In Table 2, Column 2 (labeled with Precis) shows the evaluation results for RQ1. The column
shows the number of contracts learned by Precis, for each subject, that are found safe by both Pex-
High and Randoop. Precis is effective in synthesizing safe contracts: Precis learns safe contracts
for 82% (43/52) of the methods. For our second safety check, we manually inspect the 43 contracts
synthesized by Precis where neither test generator is able to find a safety violation. The manual
check of a contract proceeds by understanding the contract to check whether it is an appropriate
contract for the method. Apart from doing so, we take each leaf of the decision tree of the contract,
and manually strive to analyze and synthesize a test input that leads to an output state that falsifies
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Table 2. Results for RQ1 and RQ3: safety and relative strength of contracts inferred by Precis and Daikon𝐴𝐿 .

Classes

#Safe by Pex-High and

Randoop (RQ1)

Precis vs Daikon
𝐴𝐿

(RQ3)

Precis Daikon
𝐴𝐿

Precis Daikon
𝐴𝐿

Equivalent

ArrayList 9 9 3 0 6
BinaryHeap 5 5 5 0 0
Dictionary 7 7 4 0 3
HashSet 4 4 2 0 2
Queue 5 5 5 0 0
Stack 5 5 5 0 0
UndirectedGraph 8 4 1 0 0
Total 43 39 25 0 11

the constraint corresponding to the leaf. If our manual best efforts cannot find a reason why the
contract is unsafe, we declare it to be safe. The results of our manual inspection (not shown in
the table) show that indeed the remaining 43 contracts are safe. This finding shows not only the
effectiveness of Precis but also the effectiveness of both test generators in approximating manual
inspection. Out of the 43 cases that are safe, 10 are purely conjunctive while 33 have disjunctions.
An example of a safe contract learned by Precis is given in Section 2.

The average number of rounds and samples generated by Precis for each subject are ArrayList:
5.5, 38.6; BinaryHeap: 4.3, 40.3; Dictionary: 4.7, 38.6; HashSet: 4.5, 36.5; Queue: 5, 27.6; StackTest:
6.0, 25.4; and UndirectedGraphTest: 4.8, 44.3.

6.4 RQ2: How effectively can Precis learn strong contracts?
To answer this question, we manually derive strong contracts for all the 52 methods, and compare
the relative strength of the manually derived contracts and the contracts learned by Precis.
We assign one author solely for writing contracts; note that this author is not involved in

technique or tool development. This author is given just the code of a subject, the available observer
methods, and the grammar for contracts. We then check whether the manually derived contracts
are safe. On safe contracts, we check whether they are stronger than the contracts learned by
Precis.

We automatically conduct the comparison for strength between the manually derived contracts
and the contracts learned by Precis. The automatic comparison leverages an SMT solver, namely
Z3 [De Moura and Bjørner 2008], to do the two required inclusion checks.
Our results, shown in Table 3, indicate that there are substantially more cases where Precis

learns contracts stronger than the manually derived contracts than the cases of the other way
around (29 to 10). Furthermore, 23 out of the 29 stronger contracts learned by Precis are also
truly safe. Out of the 52 contracts (for all the 52 methods, respectively), 10 are equivalent and 13
are incomparable between the ones learned by Precis and the ones manually derived. On cases
where Precis does not learn a stronger contract, we notice that in some of these cases the learned
contract relates two different aspects of the output state (which we do not consider in our logics
for synthesis). In another example, the manually derived contract has a predicate that could have
been synthesized by Precis but is not (likely because predicate synthesis is used only at leaves).

We compare the contracts learned by Precis given ideal preconditions from the previouswork [As-
torga et al. 2019] (and reported in Table 3) with contracts learned by Precis where preconditions
are set simply to true. When given precondition true, the test generator can find inputs on which
the target method throws exceptions and does not return in a non-error state. Our tool simply
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Table 3. Results for RQ2: the number of methods where the contracts learned by Precis are stronger, the
manually derived contracts are stronger, and the contracts resulted from the two ways are equivalent (and
incomparable), respectively.

Classes Precis Manual Equivalent Incomparable Total

ArrayList 3 0 2 4 9
BinaryHeap 4 0 3 0 7
Dictionary 4 0 3 0 7
HashSet 3 0 1 0 4
Queue 2 0 0 3 5
Stack 3 0 0 2 5
UndirectedGraph 10 0 1 4 15
Total 29 0 10 13 52

discards such inputs, since the goal is only to learn contracts/summaries on which the method
does terminate. Note that the preconditions affect only the test generator, and through this, the
contract synthesized (the synthesis tool does not consider the precondition directly). With a 5
hour timeout, we are able to generate contracts for 43 out of the 52 methods. Of these 43, on 29
methods the contracts learned with ideal preconditions are equivalent to the contracts learned
with preconditions being true. On 5 methods the contracts learned with preconditions being true
are stronger, and for 3 methods contracts learned with ideal preconditions are stronger. Some of
the contracts learned with preconditions being true end up capturing aspects of the preconditions
needed in order for the methods not to throw an exception.

6.5 RQ3: How effective is Precis in comparison to Daikon𝐴𝐿?
We compare Precis with Daikon𝐴𝐿 , an enhancement of Daikon placed in an online learning
loop with a test generator. We choose Daikon for comparison because it pioneers the research
on dynamically inferring likely invariants. The Daikon tool includes fixed heuristics for inferring
disjunctions [Dodoo et al. 2003] and the tool is continuously updated (e.g., its latest release by the
time of this paper writing was made in March 2021). In particular, we are interested in knowing how
often, in our evaluation subjects, Precis is able to learn safer and/or stronger contracts compared
to Daikon𝐴𝐿 .
For checking safety, we use the same mechanism as the one used to address RQ1, i.e. using the

two test generators, namely Randoop and Pex-High. Our results are shown in Columns 2–3 of
Table 2.

Our results show that Precis synthesizes more safe contracts thanDaikon𝐴𝐿 (43 vs 39). We notice
that the heuristics used by Daikon to synthesize disjunctive concepts sometimes lead to overfitting
the observed behaviors, leading it to produce truly unsafe contracts. For instance, the method
𝐸𝑑𝑔𝑒𝐶𝑜𝑢𝑛𝑡 (), given an undirected graph, 𝑔, returns the number of edges in 𝑔, and this class has an
observer method 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 (), which returns the number of nodes in the graph. The contract
that Daikon𝐴𝐿 infers is · · · ∧ VertexCountpre = VertexCountpost ∧ (VertexCountpost=0 ∨ VertexCountpost =
1∨ VertexCountpost =7), being clearly unsafe.

For checking the relative strength of contracts, we use Z3 in the same way as in RQ2. Columns
4–6 in Table 2 show the number of the methods where the contracts learned by Precis are stronger,
the ones inferred by Daikon𝐴𝐿 are stronger, and the number of the methods where the contracts
by the two tools are equivalent. Our results show that ∼50% (25/52) of contracts learned by Precis
are strictly stronger than their Daikon𝐴𝐿 counterparts, while none of the contracts inferred by
Daikon𝐴𝐿 are stronger than those learned by Precis.
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Table 4. Results for RQ4: the number of the methods on which Precis learns stronger, weaker, equivalent,
and incomparable contracts compared to those learned by PrecisConj, respectively.

Classes Precis PrecisConj Equivalent Incomparable Total

ArrayList 2 0 7 0 9
BinaryHeap 2 1 4 0 7
Dictionary 6 0 1 0 7
HashSet 3 0 1 0 4
Queue 4 0 1 0 5
Stack 4 0 1 0 5
UndirectedGraph 12 0 0 3 15
Total 34 1 14 3 52

We further analyze our tool’s components that contribute to the strength of our synthesized
contracts over the ones inferred by Daikon𝐴𝐿 . Of the 25 methods where the contracts learned by
Precis is stronger, we find that for 9 methods, Precis with predicate synthesis produces a safe and
stronger contract than Precis without predicate synthesis. For these 9 methods, we run Daikon𝐴𝐿
seeded with the synthesized predicates, and check whether it is now able to produce stronger
contracts. We find that on 6 methods Daikon𝐴𝐿 still produces weaker contracts than Precis, while
on the other 3 it produces equivalent contracts.
On the 25 methods where the contracts learned by Precis is stronger, in 2 of them Daikon𝐴𝐿

simply infers true and in 14 of them it infers a conjunctive contract while Precis learns a contract
with disjunctions. In 30% (16/52) of the cases, the contracts by the two tools are incomparable.
6.6 RQ4: How much does the learning of disjunctive contracts (using decision trees)

contribute to the overall effectiveness of Precis?
To understand the benefits of synthesizing contracts with disjunctions/conditionals, we create
a version of our tool namely Precis𝐶𝑜𝑛𝑗 that generates strongest conjunctive contracts, using
the elimination learning algorithm [Mitchell 1997]. This conjunctive learner is similar to the one
used by Daikon, except that we keep our predicate synthesis component and we do not have the
heuristics that Daikon uses for mildly disjunctive formula synthesis.

We compare this tool with Precis; our results are shown in Table 4, including the total number of
stronger contracts learned by Precis compared to Precis𝐶𝑜𝑛𝑗 and vice-versa, equivalent contracts,
and incomparable contracts. Out of the 43 methods with truly safe contracts learned by Precis,
42 of those methods also have safe contract learned by Precis𝐶𝑜𝑛𝑗 . Among these 42 methods,
26 (61%) have contracts that are stronger than those contracts learned by Precis𝐶𝑜𝑛𝑗 . None of
contracts learned by Precis𝐶𝑜𝑛𝑗 are stronger than those learned by Precis. Our results indicate
that synthesizing contracts with disjunctions/conditionals is crucial in learning stronger contracts,
but care is needed as facilitated by the notion of tight techniques in this paper.

6.7 RQ5: How much does the use of predicate synthesis contribute to the overall
effectiveness of Precis?

To understand the benefits of synthesizing predicates at the leaves of decision trees, we create a
version of our tool namely Precis𝑤/𝑜 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 that synthesizes decision trees over only the original
set of predicates. For this set of experiments, we set a timeout of five hours for each method under
analysis. In total, we learn contracts for 45 methods. The results are shown in Table 5. Out of
those 45, 6 are not safe contracts. In comparison with Precis, 9 contracts are incomparable, 20 are
equivalent, and 6 are stronger than those learned by Precis. In these 6 cases, 5 of the contracts are
not safe while the remaining 1 is safe. On the other hand, Precis learns 10 (10/45 = 22%) contracts
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Table 5. Results for RQ5: the number of methods on which Precis learns stronger, weaker, equivalent, and
incomparable contracts compared to those learned by Precisw/o synthesis, respectively

Classes Precis Precisw/o synthesis Equivalent Incomparable Total

Stack 3 0 2 0 5
Queue 1 0 3 1 5
HashSet 2 0 2 0 4
Dictionary 3 0 4 0 7
ArrayList 0 2 5 2 9
BinaryHeap 0 0 1 0 1
UndirectedGraph 1 4 3 6 14
Total 10 6 20 9 45

Table 6. Results for RQ6: the number of methods in which Precis learns stronger, weaker, equivalent, and
incomparable contracts compared to those learned by Precis𝑘=2, respectively

Classes Precis Precis𝑘=2 Equivalent Incomparable Total

ArrayList 0 4 5 0 9
Dictionary 0 0 7 0 7
HashSet 0 0 4 0 4
Queue 0 1 4 0 5
Stack 1 0 4 0 5
Total 1 5 24 0 30

that are stronger than Precis𝑤/𝑜 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 . Of those 10, 9 are also safe. Our results indicate that
synthesizing predicates has a definite positive impact in learning stronger contracts.

6.8 RQ6: How effective is the choice of 1-tightness for contract synthesis? In
particular, would 2-tight contracts be much better?

To understand the benefits of our 1-tightness design choice for contract synthesis, we create a
version of our tool namely Precis𝑘=2 that synthesizes 2-tight contracts. Precis𝑘=2 takes much
longer for the learning phase in each round, and we set a timeout of five hours. In total, we are
able to compare on 30 methods. Table 6 shows our results. For most cases, 2-tight contracts are
equivalent in the end to 1-tight contracts (for 24/30 = 80%). In some cases, the 2-tight decision
trees are indeed stronger (5/30 = 16%) and in one case 1-tight decision trees are stronger. In all
these 5 cases, the synthesized contracts are also safe. However, the gain in expressiveness of 2-tight
contracts comes at a performance cost as in 22 of the methods Precis2𝑘 could not finish in the
allotted five hours. Our results show that on these subjects 1-tight contracts are the sweet spot
between efficiency and strength.

7 RELATEDWORK
The work most closely related to ours is Daikon [Ernst 2000; Ernst et al. 1999], which also infers
specifications in a (mostly) black-box manner by observing dynamic executions (and which we
compare our approach against in Section 6). There are multiple crucial differences though. First,
Daikon works by learning passively from a set of executions, while our approach works by using
online learning with a test generator that produces counterexamples to learned concepts. If the
passive tests happen to accidentally satisfy a property,Daikonwould learn that as a likely invariant.
Our approach is however guaranteed to be safe with respect to the test generator, albeit with respect
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to a fixed limit on testing resources. Second, Daikon mostly learns only conjunctive concepts,
admitting the simple elimination learning algorithm [Mitchell 1997]. Our approach instead learns
arbitrary Boolean combinations of predicates using decision trees, calling for notions such as
tightness and learning algorithms for tight formulas that we develop in this paper. Daikon does
have some support for learning implications [Dodoo et al. 2003; Ernst 2000], but these implications
are formed using conditionals that occur in the code of the program under analysis using mild static
analysis. More importantly, this kind of support would result in learning conditions involving an
object’s internal variables that are not visible to the client, which we avoid in our work. The work
reported by Polikarpova et al. [2009] compares Daikon-inferred contracts against user-written
contracts, and identifies multiple shortcomings with Daikon, including not being able to learn
arithmetic expression relations (which we do with expression synthesis using SyGuS) or learn more
complex Boolean expressions of the form 𝑝 ⇒ 𝑞, ¬(𝑝 ∧𝑞) (which we do by learning decision trees).
In this work, our approach uses a testing oracle instead of a verifier for practical reasons (see

also discussion regarding verification oracles in Section 3). There have been various approaches to
mining specifications based on automata learning [Alur et al. 2005; Ammons et al. 2002; Henzinger
et al. 2005; Whaley et al. 2002; Xie et al. 2006] or dynamic and symbolic analysis [Astorga et al.
2018; Csallner et al. 2008; DeFreez et al. 2019; Le et al. 2019]. The predicate synthesis aspect of our
work is similar to the PIE approach [Padhi et al. 2016] that proposes feature expression synthesis
in order to learn preconditions as well as loop invariants, but not strong/tight contracts. The
work by Fraser and Zeller [2011] infers assertions for test code by mutation testing to extract
negative examples and employ aDaikon-like approach to generate conjunctive assertions. Thework
by Jahangirova et al. [2016] also uses mutation testing to infer assertions, and iterates over rounds
with the programmer. The work by Molina et al. [2021] similarly infers program postconditions
using an evolutionary algorithm to improve postconditions over generations. It mutates valid
input-output pairs derived from test generation to produce potential invalid pairs, albeit in an
unsound way. The work by Terragni et al. [2020] similarly uses a co-evolutionary algorithm to
improve program postconditions. Given a wrong postcondition, this work infers more precise
postconditions. The efficacy of the generated postconditions is also measured by how well they
accept valid input-output pairs and how well they reject invalid input-output pairs generated
through mutation testing. Our work is similar in that it uses testing, but our work learns purely
from positive examples, rather than mutated ones that are unsoundly assumed to be negative.
Furthermore, our work can synthesize Boolean contracts and not just conjunctive ones. Another
line of work explores mining specifications from natural language available in source code [Pandita
et al. 2012; Zhai et al. 2020]. Such work tries to capture the intent of developers but relies on the
availability of API documentation or code comments.
Note that the preceding related work is implemented for Java programs while our subjects

and tools are for C#, making a direct empirical comparison hard. Various data-driven learning
approaches have also been proposed for various synthesis tasks for program analysis [Churchill
et al. 2019; Ezudheen et al. 2018; Garg et al. 2016; Neider et al. 2016; Zhu et al. 2018], including
synthesizing annotations to help verification and prove equivalence of programs. Other work by
Betts et al. [2012] uses a combination of heuristics and the Houdini algorithm for inferring invariants
and contracts for verifying race- and divergence-freedom of GPU kernels. Candidate invariants are
first heuristically generated and then are passed to Houdini to verify which candidates actually
hold and are inductive. In another domain, the work of Newcomb et al. [2020] synthesizes rewrite
expressions to prove properties of code required for efficient compilation in Halide.
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8 CONCLUSION
In this paper, we have presented a novel approach for learning safe and strong contracts from code
with guarantees modulo a test generator. Our synthesis approach is effective on our benchmarks,
and seems promising to be applied to aid downstream problems such as unit testing, runtime
monitoring (e.g., for anomaly detection), verification, regression checking (e.g., for detecting change
of contracts as software evolves), which we think are interesting future directions. On the contract
synthesis front, valuable future directions to pursue include exploring a richer class of logics that
state more expressive properties such as an abstract datatype with a ghost state that captures more
accurate functional descriptions of what methods do. Finally, our passive one-class learning of tight
contracts could be useful in other domains (such as learning likely invariants from dynamic traces
on inputs), as it is a stand-alone module that need not be paired with a test generator.
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