
PaCon: A Symbolic Analysis Approach
for Tactic-Oriented Clustering
of Programming Submissions

Yingjie Fu
yingjiefu@stu.pku.edu.cn

Peking University
Beijing, China

Jonathan Osei-Owusu
jo28@illinois.edu

University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA

Angello Astorga
aastorg2@illinois.edu
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA

Zirui Neil Zhao
ziruiz6@illinois.edu

University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA

Wei Zhang
zhangw.sei@pku.edu.cn

Peking University
Beijing, China

Tao Xie
taoxie@pku.edu.cn
Peking University
Beijing, China

Abstract
Enrollment in programming courses increasingly surges. To
maintain the quality of education in programming courses,
instructors need ways to understand the performance of stu-
dents and give feedback accordingly at scale. For example,
it is important for instructors to identify different problem-
solving ways (named as tactics in this paper) used in pro-
gramming submissions. However, because there exist many
abstraction levels of tactics and high implementation diver-
sity of the same tactic, it is challenging and time-consuming
for instructors to manually tackle the task of tactic identifica-
tion. Toward this task, we propose PaCon, a symbolic analysis
approach for clustering functionally correct programming
submissions to provide a way of identifying tactics. In partic-
ular, PaCon clusters submissions according to path conditions,
a semantic feature of programs. Because of the focus on pro-
gram semantics, PaCon does not struggle with the issue of
an excessive number of clusters caused by subtle syntactic
differences between submissions. Our experimental results
on real-world data sets show that PaCon can produce a rea-
sonable number of clusters each of which effectively groups

* Tao Xie is also with the Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education, China, and is the
corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPLASH-E ’21, October 20, 2021, Chicago, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9089-7/21/10. . . $15.00
https://doi.org/10.1145/3484272.3484963

together those submissions with high syntax diversity while
sharing equivalent path-condition-based semantics, provid-
ing a promising way toward identifying tactics.

CCS Concepts: • Social and professional topics→Com-
puting education; •Theory of computation→Program
analysis.

Keywords: programming education, clustering, symbolic
analysis, path condition

ACM Reference Format:
Yingjie Fu, Jonathan Osei-Owusu, Angello Astorga, Zirui Neil Zhao,
Wei Zhang, and Tao Xie. 2021. PaCon: A Symbolic Analysis Ap-
proach for Tactic-Oriented Clustering of Programming Submissions.
In Proceedings of the 2021 ACM SIGPLAN International SPLASH-
E Symposium (SPLASH-E ’21), October 20, 2021, Chicago, IL, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3484272.
3484963

1 Introduction
In recent years, programming courses, especially online pro-
gramming courses [19], have attracted high enrollment from
all over the world. As the size of classrooms increases, in-
specting programming submissions for grading, constructing
reference solutions, and preparing targeted teaching mate-
rials has become increasingly time-consuming. Some auto-
mated tools [1, 7, 9, 11, 21, 23, 27, 29] have been proposed to
assist instructors of online programming courses. These tools
typically focus on the functional correctness of submissions
or how to modify incorrect submissions into functionally
correct ones.

However, it is also important to identify the ways (named
as tactics in this paper) that students solve a problem, for
three main reasons. First, identifying tactics can assist in-
structors in achieving more efficient grading when tactic-
related constraints appear in the description of assignments.

https://doi.org/10.1145/3484272.3484963
https://doi.org/10.1145/3484272.3484963
https://doi.org/10.1145/3484272.3484963


SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Yingjie Fu, Jonathan Osei-Owusu, Angello Astorga, Zirui Neil Zhao, Wei Zhang, and Tao Xie

For example, given the assignment “find the largest differ-
ence between any two elements in an array without sorting”,
a submission that first sorts the input array elements and
then subtracts the smallest element from the largest element
should not receive full marks, because it violates the require-
ment “without sorting.” Because tactic-related characteristics
of submissions cannot be reflected by the output of programs,
without tool assistance, instructors have to manually inspect
each submission to check whether these tactic-related con-
straints are satisfied. Second, identifying tactics can help
instructors efficiently come up with a variety of reference
solutions that can be valuable for semi-automated tools to
generate customized feedback. Some existing tools [5, 8, 13]
for feedback generation require users to provide templates or
model solutions to match against programming submissions,
but it is challenging for an inexperienced instructor to list
comprehensive templates ahead of time. By identifying dif-
ferent tactics used in functionally correct submissions from
students, instructors can craft reference solutions with less
effort. Third, identifying tactics can help instructors prepare
targeted and adaptive teaching materials. For example, when
students are asked to “find the k-th largest number of the
given array”, a good way to solve the problem in this assign-
ment is the way of using “divide and conquer”, but many
students may use the way of sorting to solve this problem.
By identifying the used tactics, instructors can have a view
of the distribution of tactics in submissions from students,
and then lecture to the class about the relationship of the
“sorting” and “divide and conquer” ways.

Identifying tactics in programming submissions is a chal-
lenging and time-consuming task for two main reasons. First,
it is difficult to provide a clear definition of tactic, because the
identification of tactics reflects different levels of abstraction,
depending on the specific assignments and teaching require-
ments. For example, when we focus on the assignment of
sorting, different tactics of submissions can be divided into
known tactics such as bubble sort, insertion sort, and merge
sort. But for the assignment of “finding the k-th largest el-
ements in an array”, the tactics can be divided into divide
and conquer, sorting, and brute force. In the latter assign-
ment, a proper clear definition of tactic ought not to capture
the specific used sorting algorithm. Second, programs that
adopt the same tactic may have distinct ways of syntacti-
cally organizing the code. For example, given the problem
of computing 𝐶𝑛

𝑚 , both loop and recursion can achieve the
same tactic “computing𝐶𝑛

𝑚 by calculating factorials”, but they
show apparent syntactic differences.
To help identify tactics in programming submissions, in

this paper, we propose PaCon, a symbolic analysis approach
for clustering functionally correct programming submissions
to provide a way of identifying tactics. PaCon uses path con-
ditions from symbolic execution [14] to cluster submissions.
Executing a program with the given input value can exercise
(i.e., follow) a path in the program. The path condition for

this path, also referred to as the path condition for the given
input value, represents the input constraints (1) that all in-
put values exercising this path must satisfy and (2) whose
satisfying input values must cause to exercise this path.
Our insight underlying PaCon is that the input-space-

partitioning strategy adopted by a submission can offer a way
to look for tactics, and such strategy can be derived based
on the path conditions of input values. In particular, path
conditions reflect how the program of the submission divides
the input space into multiple equivalence classes, each of
which includes all the input values that follow the same path.
Revisit the earlier described example: two submissions that
compute 𝐶𝑛

𝑚 by calculating factorials, including one using
loops for the calculation and the other one using recursion.
Although the two submissions are implemented differently,
their programs share the same input-space-partitioning strat-
egy derived based on the path conditions.
Based on this insight, the workflow of PaCon consists

of three main steps: (1) test generation, (2) path condition
collection, and (3) path-condition-based clustering. PaCon
first runs a structural test generator to generate test inputs
(in short as tests), normalizes the set of the generated tests,
and then collects the path conditions of these tests. In the
last step of clustering, PaCon ensures that submissions in
the same cluster must have semantically equivalent path
conditions for each of the generated tests.

We conduct an evaluation on real-world data sets to show
that the number of clusters produced by PaCon is reasonable,
and PaCon is able to produce clusters each of which effec-
tively groups together those submissions with high syntax
diversity while sharing equivalent path-condition-based se-
mantics. By manually looking into the clusters produced by
PaCon, we find that the clusters can be a good indicator of
how the submissions differ in their ways to solve the target
problem. These results demonstrate that PaCon can provide
a promising way toward identifying tactics.

This paper makes the following main contributions:

• We raise the awareness of identifying tactics in student
programming submissions.
• We propose a symbolic analysis approach named Pa-
Con for clustering functionally correct programming
submissions to provide a way of identifying tactics.
• We conduct an evaluation on real-world data sets for
assessing PaCon in clustering functionally correct pro-
gramming submissions.

2 Motivating Example
In this section, we present a motivating example to illustrate
(1) the challenge faced by clustering approaches to help iden-
tify tactics and (2) why existing approaches fail in this task.
The motivating example shown in Listings 1-3 is about a
programming assignment of “finding the largest difference
between any two elements in an array of int values” where the



PaCon: A Symbolic Analysis Approach for Tactic-Oriented Clustering of Programming Submissions SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

input a is not null. In Listings 1-3, max-difference(A), max-
difference(B), and max-difference(C) show the snapshots of
three submissions, which are all functionally correct.

Listing 1. max-difference(A)
1 // Tactic: compute max and min (using

built -in API methods) and return their
difference.

2 public class Program {
3 public static int Puzzle(int[] a) {
4 return a.Max()-a.Min();
5 }
6 }

Listing 2. max-difference(B)
1 // Tactic: compute max and min (not using

built -in API methods) and return their
difference.

2 public class Program{
3 public static int Puzzle(int[] a){
4 int max = a[0], min = a[0];
5 for (int i = 1;i < a.Length;i++){
6 if (a[i] > max){
7 max = a[i];
8 }
9 }
10 for (int i = 1;i < a.Length;i++){
11 if (a[i] < min){
12 min = a[i];
13 }
14 }
15 return max - min;
16 }
17 }

Listing 3. max-difference(C)
1 // Tactic: compute all the pairwise

element differences , then return the
maximum.

2 public class Program {
3 public static int Puzzle(int[] a) {
4 int max=0;
5 foreach(int i in a){
6 foreach(int j in a){
7 max=i-j>max?i-j:max;
8 }
9 }
10 return max;
11 }
12 }

Among these three submissions, max-difference(A) and
max-difference(B) share similarities in the way that they
solve the problem. Specifically, the first two submissions first
find the maximum and the minimum elements of the array
and then subtract the minimum element from the maximum
element to get the expected return. The submission max-
difference(C) solves the problem by checking all pairs of
elements and comparing the difference.

However, these three submissions also differ in variable
names and code structure. In terms of variable names, max-
difference(A) and max-difference(B) both use the variable max
to record the maximum and use the variable min to record
the minimum, but max-difference(C) directly uses max to
record the expected maximum difference. In terms of code
structure, max-difference(A) uses the built-in Max and Min

API methods, but max-difference(B) uses two for-loops to
identify the largest and smallest integer elements in the array,
respectively. To compare all the pairwise differences between
elements, max-difference(C) implements a two-level nested
for-loop.
In this example, if we do not consider the implementa-

tion of the Max and Min API methods, a desirable clustering
approach that can help identify tactics should be able to
identify the similarities between max-difference(A) and max-
difference(B) in their problem-solving ways and group them
together. As for the max-difference(C) submission, because it
uses a different tactic, a desirable clustering approach should
not put it into the same cluster as max-difference(A) and
max-difference(B).
Many existing syntax-based approaches rely on specific

program features such as control flow, variable sequence, and
Abstract Syntax Tree (AST) to cluster submissions. These
approaches put two submissions into the same cluster only
when their specific program features are the same or highly
similar. For example, CLARA [9] puts two submissions into
the same cluster only if the looping structure of the two
submissions match. OverCode [6] requires that the sets of
statements (after renaming variables) of the two submissions
in the same cluster must be the same. These two approaches
both put the first two submissions into separate clusters.
From the preceding example, we can see that existing

syntax-based approaches do not consider the problem-solving
ways of programs, and thus they do not work well in helping
identify tactics. Toward identifying tactics, we propose to
take semantic program information into account.

3 Approach
In this section, we present our symbolic analysis approach for
clustering programming submissions, named PaCon, which
clusters programming submissions based on path conditions,
a semantic feature of programs.

3.1 An Overview of PaCon
Given a programming problem, PaCon takes a set of func-
tionally correct submissions as input and outputs a set of
submission clusters. To simplify the subsequent discussion,
we assume that each submission has a static method, named
Puzzle, which takes inputs through its arguments args and
returns its result through the return value. The types of the
arguments and the return can be either primitive types or
classes.



SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Yingjie Fu, Jonathan Osei-Owusu, Angello Astorga, Zirui Neil Zhao, Wei Zhang, and Tao Xie

Figure 1. The Workflow of PaCon

Figure 1 shows the overview of PaCon’s workflow, which
consists of three steps: (1) test generation, (2) path condi-
tion collection, and (3) path-condition-based clustering. The
purpose of the first step is to generate high-code-coverage
tests, which can help reflect the program behavior of the
submissions. In the second step, for every submission, PaCon
collects its path condition from running each test on this
submission. Finally, PaCon groups submissions based on the
equivalence of their path-condition semantics and outputs a
set of submission clusters.

3.2 Test Generation
The purpose of this step is to attain tests with high code
coverage such as high statement, block, branch, data flow,
and path coverage. Ideally, the tests should comprehensively
sample input values that can help exercise different paths
and thus different resulting path conditions, in order to dif-
ferentiate different input-space-partitioning strategies across
submissions.

This step includes two modules: a wrapper method gener-
ator and a test generator. PaCon first constructs a wrapper
method for the programming problem. The wrapper method
can be regarded as a parameterized unit test [26] of the Puzzle
method. The wrapper method can be generated automati-
cally with respect to the argument types and the return type
of any functionally correct solution of the problem. Listing
4 presents a simplified version of the wrapper method for
max-difference shown in Section 2. If there is any precon-
dition (i.e., constraint for the input arguments), instructors
can manually add the precondition in the generated wrap-
per method. Note that only one wrapper is needed for each
problem, so it is an acceptable workload for instructors to
prepare the wrapper method even manually.

Listing 4. A simplified example of the wrapper method for
max-difference
1 public static void Wrapper(int[] args) {
2 global :: Program.Puzzle(args);
3 }

After the wrapper method is ready, PaCon interacts with a
structural test generator to attain tests with high code cover-
age. Note that it may be impossible to achieve full coverage
of paths in a program, e.g., one where the number of loop
iterations is the value of an integer input argument without
any bound constraint, and thus there exist an infinite num-
ber of paths and path conditions. The goal of a structural
test generator typically can be configured as achieving high
statement, block, branch, or data flow coverage. In our imple-
mentation of PaCon , the adopted structural test generator
is Pex [25], whose configuration by default is to generate
tests with high block coverage. For the motivating example
shown in Section 2, the number of tests generated by Pex for
max-difference(A), max-difference(B), and max-difference(C)
is 1, 6, and 2, respectively.

3.3 Path Condition Collection
In this step, PaCon aims to collect the path condition derived
from each test. Executing a program with the given input
value in the test can exercise (i.e., follow) a path in the pro-
gram. The path condition for this path, also referred to as the
path condition for the given input value, represents the input
constraints (1) that all input values exercising this path must
satisfy and (2) whose satisfying input values must cause to
exercise this path.

Different from the branch conditions along the exercised
path, a path condition includes constraints involving only
variables from the input arguments, not any local variables



PaCon: A Symbolic Analysis Approach for Tactic-Oriented Clustering of Programming Submissions SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

in the program. For example, for the submission in Listing
2, there are two branch conditions in Lines 6 and 11, respec-
tively, and they both involve a local variable (max and min,
respectively). Given an input array a=[1,2], the path condi-
tion is a[1]>a[0] && a[1]>=a[0], instead of a[1]>max &&

a[1]>=min.
Note that to cluster submissions, PaCon needs their path

conditions of the same test. But a structural test generator
typically cannot guarantee to produce the same set of tests
on each run, and the set of tests generated for any two sub-
missions, respectively, may also be different. For example, for
max-difference(A) in Listing 1, Pex generates one test as [18,
18], and for max-difference(C) in Listing 3, Pex generates two
tests: [32, 48] and [40, 41, 18]. Therefore, it is necessary
to use the same set of tests for each of all the submissions so
that we can fairly compare the resulting path conditions for
each submission over the input space.

In this step, PaCon conducts test normalization by taking
the union of all the tests produced by the first step for each
of all the submissions and placing them into a set where only
unique tests are kept. Then PaCon invokes the path condition
collector on each submission to collect path conditions of the
tests in the normalized test set. In this way, the normalized
test set for max-difference(A), max-difference(B), and max-
difference(C) includes [18, 18], [32, 48], [40, 41, 18],
etc.
We leverage Pex as the path condition collector. In par-

ticular, Pex provides a convenient way to attain the path
condition of the input value in a test, i.e., by calling the
GetPathConditionString API method provided by Pex . We
simply return the result of calling GetPathConditionString

as the collected path condition.

3.4 Path-Condition-Based Clustering
In this step, PaCon conducts path-condition-based clustering
to group functionally correct submissions into a set of sub-
mission clusters, based on equivalent path-condition-based
semantics.
The high-level idea of path-condition-based clustering is

that, for two given correct submissions 𝑠1 and 𝑠2 for the same
problem, PaCon checks whether 𝑠1 and 𝑠2 have semantically
equivalent path conditions of each test in the normalized
test set. If so, PaCon puts them into the same cluster. It is
worth mentioning that the equivalence between submissions
is transitive. Therefore, when assessing whether a submis-
sion belongs to a given cluster, PaCon needs to compare the
submission against only one submission randomly chosen
from this cluster, instead of against all submissions in it.
The pseudo-code of path-condition-based clustering is

shown in Algorithm 1. PaCon iterates through all correct
submissions (Line 2). For each submission 𝑠 , PaCon traverses
the existing clusters to check whether 𝑠 belongs to any of
them by comparing path conditions. Specifically, PaCon ran-
domly selects a submission 𝑟 belonging to an existing cluster

Algorithm 1: path-condition-based clustering
Input: a set of tests 𝑇 , a set 𝑆 of functionally correct

submissions, and their path conditions 𝑃𝐶 of
each test ∈ 𝑇

Output: a set of submission clusters 𝐶
1 𝐶 ← ∅;
2 for submission 𝑠 ∈ 𝑆 do
3 𝑓 𝑜𝑢𝑛𝑑𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝐹𝑎𝑙𝑠𝑒;
4 for cluster 𝑐 ∈ 𝐶 do
5 𝑟 ← a submission randomly chosen from 𝑐;
6 if 𝑖𝑠𝐸𝑞(𝑠, 𝑟,𝑇 , 𝑃𝐶) then
7 𝑐 ← 𝑐 ∪ {𝑠};
8 𝑓 𝑜𝑢𝑛𝑑𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑇𝑟𝑢𝑒;
9 break;

10 if 𝑓 𝑜𝑢𝑛𝑑𝑐𝑙𝑢𝑠𝑡𝑒𝑟 == 𝐹𝑎𝑙𝑠𝑒 then
11 𝑐 ′← {𝑠};
12 𝐶 ← 𝐶 ∪ {𝑐 ′}

13 return 𝐶

Algorithm 2: 𝑖𝑠𝐸𝑞(𝑠1, 𝑠2,𝑇 , 𝑃𝐶)
Input: two functionally correct submissions 𝑠1, 𝑠2, a

set of tests 𝑇 , and their path conditions 𝑃𝐶 of
each test ∈ 𝑇

Output: 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒
1 for test 𝑡 ∈ 𝑇 do
2 𝑝𝑐1 ← 𝑔𝑒𝑡𝑃𝐶 (𝑃𝐶, 𝑠1, 𝑡);
3 𝑝𝑐2 ← 𝑔𝑒𝑡𝑃𝐶 (𝑃𝐶, 𝑠2, 𝑡);
4 if not 𝑝𝑐1 == 𝑝𝑐2 𝑖𝑛 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 then
5 return 𝐹𝑎𝑙𝑠𝑒;

6 return 𝑇𝑟𝑢𝑒

𝑐 as a representative (Line 5), and then calls the function
𝑖𝑠𝐸𝑞 to determine whether 𝑠 and 𝑟 are equivalent (Line 6). If
𝑖𝑠𝐸𝑞 returns 𝑇𝑟𝑢𝑒 (Lines 7-9), cluster 𝑐 can be regarded as
the cluster that the submission 𝑠 belongs to, and PaCon adds
𝑠 into cluster 𝑐 and moves on to work on the next submission.
If the current cluster set 𝐶 is empty or there is no cluster
found for submission 𝑠 , PaCon builds a new cluster and puts
𝑠 into it (Lines 10-12). When all submissions are placed in
their respective cluster, PaCon returns set 𝐶 as the clusters
of submissions.

As shown in Algorithm 2, the equivalence of two submis-
sions 𝑠1 and 𝑠2 is determined by the semantic equivalence
of their path conditions. Specifically, for each test 𝑡 ∈ 𝑇 ,
the path conditions of 𝑠1 and 𝑠2 are represented as pc1 and
pc2 , respectively. 𝑠1 and 𝑠2 are considered equivalent, if and
only if the semantics of pc1 and pc2 are equivalent for each
test in 𝑇 . This equivalence is dedicated to identifying how
a program divides the input space into equivalence classes.



SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Yingjie Fu, Jonathan Osei-Owusu, Angello Astorga, Zirui Neil Zhao, Wei Zhang, and Tao Xie

Ideally, for two submissions 𝑠1 and 𝑠2 in the same cluster and
an arbitrary input 𝑡 , the equivalence classes of 𝑡 for 𝑠1 and
𝑠2 should be the same. We achieve the semantic comparison
of path conditions through a path condition parser and a
constraint solver Z3 [20].

4 Evaluation
In this section, we aim to answer three research questions by
empirically investigating the number of clusters produced by
PaCon and the diversity of syntax in each produced cluster
compared to the results produced by syntax-based tools, and
exploring what kind of tactics can be reflected by the clusters
produced by PaCon .

To help answer the first two research questions, besides Pa-
Con, we also study two syntax-based clustering tools, which
are based on two (near-)duplicate-code detection tools that
canwork onC# programs: dupFinder (DF) [12] from JetBrains,
and Near-Duplicate (ND) [16] from Microsoft. In particular,
to produce clusters from the results of (near-)duplicate-code
detection, we put two submissions into the same cluster if
there is any duplicate code fragment between them. For each
submission that shares no duplicate code fragment with any
other submissions, we put this submission into a separate
cluster.

4.1 Research Questions
RQ1: What is the number of clusters produced by Pa-
Con compared with syntax-based tools? The purpose of
RQ1 is to investigate to what extent PaCon can potentially re-
duce the workload of instructors in inspecting programming
submissions. One goal of PaCon is to relieve instructors from
the burden of inspecting an intractable number of submis-
sions. Ideally, with the help of clustering, instructors need to
select only one representative from each cluster for inspec-
tion, rather than looking into all submissions. However, if
the number of clusters produced by a clustering approach
remains large, it is still burdensome for instructors to inspect
all representatives, and then the clustering approach is not
feasible in practice. To answer this question, we count the
number of clusters produced by PaCon, compared with the
number of clusters produced by ND and DF, respectively.
RQ2: How diverse is the syntax of submissions in-

cluded in a cluster produced by PaCon ? The purpose
of RQ2 is to assess the ability of PaCon to cluster together
submissions with syntactic differences but equivalent path-
condition-based semantics. To answer this question, we as-
sess the syntax diversity within each cluster produced by Pa-
Con, in short as each PaCon cluster. In particular, we measure
the syntax diversity within a PaCon cluster as the number
of syntax-based clusters (i.e., ones produced by a syntax-
based tool such as ND or DF ) that the submissions from this
PaCon cluster belong to. The higher the count, the more
syntactically diverse the PaCon cluster is.

RQ3: What kind of tactics can be reflected by the
clusters produced by PaCon ? As mentioned in Section 1,
one challenge of identifying tactics comes from the tactic
definition that changes with requirements, so it is difficult to
label the tactic(s) used in each submission as the ground truth.
The purpose of RQ3 is to investigate what kind of tactics
PaCon can help instructors identify. To answer this question,
we manually check each PaCon cluster and summarize the
tactics used in the submissions for each assignment in the
evaluation subjects.

4.2 Evaluation Subjects
The evaluation subjects consist of two sources of real-world
data sets.

Code-Hunt. The Code-Hunt data set [2] contains submis-
sions from a 48-hour worldwide coding contest. The contest
has four sectors each of which contains six puzzles, and par-
ticipants (students) were allowed unlimited attempts to solve
the programming problems within the time limit. We choose
this data set because the difficulty of its puzzles is represen-
tative of assignments in introductory-level programming
courses and also because the data set is used in related work
[3, 4, 18].
Of the 24 total puzzles in the Code-Hunt data set, we

first choose the 12 ones whose submissions include at least
one branch. Considering that PaCon focuses on clustering
only functionally correct submissions, we further exclude
the submissions that do not perform functionally the same
as their given solution in Code-Hunt, keeping only function-
ally correct ones. In addition, students who participated in
the contest were allowed to use either Java or C#. Because
our implementation of PaCon includes Pex (supporting C#
without supporting Java) as the test generator, we use a con-
verter [24] to translate Java submissions into C# programs
and include only those resulting C# programs that can be
successfully compiled. Finally, we exclude puzzles with fewer
than ten correct submissions remaining. Table 1 shows the
description of the puzzles included in our evaluation. The
second column of Table 2 shows the number of submissions
included in our evaluation for each of these puzzles.

Sorting. Besides the Code-Hunt data set, our evaluation
subjects also include the sorting data set consisting of a num-
ber of programs that implement the sorting functionality. We
select the sorting problem because (1) sorting is a classical
problem taught in CS programming courses, and (2) we want
to know how the tactics that PaCon can identify are related to
those well-labeled problem-solving ways. We collect sorting
programs with five different labels: bubble sort, heap sort, in-
sertion sort, quick sort, andmerge sort. We attain the programs
for these five kinds of sorting by searching with each label
as the keyword among C# programs via Google. The labels
of bubble sort, heap sort, insertion sort, quick sort, and merge
sort include 17, 11, 16, 10, and 12 programs, respectively, in
total 66 programs.



PaCon: A Symbolic Analysis Approach for Tactic-Oriented Clustering of Programming Submissions SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

Table 1. The Description of the Code-Hunt Puzzles Used in Our Evaluation

Puzzle Description
Sector2-Level2 Count the depth of nesting parentheses in a string
Sector2-Level5 Find the maximum difference between two elements in an array
Sector2-Level6 Generate the string of binary digits for the input integer 𝑛
Sector3-Level1 Create a filter that retains only values greater than or equal to a given threshold
Sector3-Level2 Compute the sum of the 𝑛-th and (𝑛 − 1)-th Fibonacci numbers
Sector3-Level3 Find the 𝑘-th smallest element in an array
Sector3-Level6 Compute the set difference of two input integer arrays
Sector4-Level2 Compute 𝐶𝑛

𝑚 , i.e., m!
(n!×(m−n)!)

Sector4-Level6
Advance each character in a string by the Fibonacci number evaluated at
the character’s integer ASCII value

4.3 RQ1 Results: Number of Produced Clusters
Table 2 shows the statistics of the clustering results. The
first two columns indicate the name of an assignment and
the total number of functionally correct submissions for this
assignment. The number of clusters produced by PaCon, ND,
and DF is shown in the last three columns 𝑁𝑐 , 𝑁𝑁𝐷 , and
𝑁𝐷𝐹 , respectively.
According to the statistics, PaCon produces at most 10

clusters for each of the Code-Hunt puzzles and 15 clusters
for the sorting problem. The number of clusters produced
by PaCon is smaller than that of both ND and DF for all
assignments. This gap is more evident as the number of sub-
missions increases. The 99 submissions for Sector3-Level2
are grouped into only 5 clusters by PaCon, and the number of
clusters produced by ND and DF is 40 and 68, respectively. In
contrast, the 17 submissions for Sector4-Level2 are grouped
into 7 clusters by PaCon, 10 clusters by ND, and 14 clusters
by DF.
The trend is consistent with our intuition: for a specific

programming problem, the submissions that adopt the same
tactic may have distinct ways of syntactically organizing the
code, and as the number of submissions increases, this gap
tends to increase as well.
In summary, PaCon can produce a reasonable number of

clusters, and the number of clusters produced by PaCon is
much smaller than that of the two syntax-based tools (ND
and DF ).

4.4 RQ2 Results: Syntax Diversity of Cluster
Figure 2 shows the distribution of PaCon clusters’ syntax
diversity for each assignment. For all the assignments, Pa-
Con can produce clusters whose syntax diversity is at least
2. In addition, the clusters with syntax diversity not less
than 2 account for at least 40% of the total clusters for most
assignments. Moreover, for Sector2-Level2, Sector2-Level5,
Sector-2-Level6, Sector3-Level2, etc., PaCon even results in
clusters whose syntax diversity is greater than 10.

Table 2. The Number of PaCon Clusters for the Evaluation
Subjects

Assignment #Submissions Nc NND NDF

Sector2-Level2 30 3 16 27
Sector2-Level5 99 6 21 61
Sector2-Level6 88 4 28 75
Sector3-Level1 37 6 8 22
Sector3-Level2 99 5 40 68
Sector3-Level3 36 4 7 34
Sector3-Level6 23 10 11 19
Sector4-Level2 17 7 10 14
Sector4-Level6 24 3 15 18

Sorting 66 15 37 55
#𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 is the number of functionally correct submissions
for each assignment. 𝑁𝑐 , 𝑁𝑁𝐷 , and 𝑁𝐷𝐹 indicate the number of
clusters produced by PaCon, ND, and DF, respectively.

When DF is used for syntax-based clustering, for all as-
signments except two (Sector2-Level5 and Sector3-Level1),
the percentage of clusters with syntax diversity of at least
2 is not less than 40%. In Sector2-Level6, the percentage
is even as high as 75%. In contrast, when ND is used for
syntax-based clustering, for Sector2-Level5, Sector2-Level6,
Sector3-Level1, and Sector3-Level6, the percentage of clus-
ters whose syntax diversity is only 1 exceeds 60%. In par-
ticular, for Sector3-Level6, only 10% of PaCon clusters have
syntax diversity greater than 1.

In summary, PaCon can effectively group together submis-
sionswith syntactic differences but equivalent path-condition-
based semantics.

4.5 RQ3 Results: Tactics Reflected by Clusters
We manually check the clusters produced by PaCon and
summarize the tactics based on the clusters for each eval-
uation subject. Due to the space limit, in this subsection,



SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Yingjie Fu, Jonathan Osei-Owusu, Angello Astorga, Zirui Neil Zhao, Wei Zhang, and Tao Xie

1 [2, 4] [5, 7] [8, 10] >10
0.0

0.2

0.4

0.6

0.8

1.0

p c

assignment = Sector2-Level2

1 [2, 4] [5, 7] [8, 10] >10
0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sector2-Level5

1 [2, 4] [5, 7] [8, 10] >10
0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sector2-Level6

1 [2, 4] [5, 7] [8, 10] >10
0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sector3-Level1

1 [2, 4] [5, 7] [8, 10] >10
0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sector3-Level2

1 [2, 4] [5, 7] [8, 10] >10
diversity

0.0

0.2

0.4

0.6

0.8

1.0

p c

assignment = Sector3-Level3

1 [2, 4] [5, 7] [8, 10] >10
diversity

0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sector3-Level6

1 [2, 4] [5, 7] [8, 10] >10
diversity

0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sector4-Level2

1 [2, 4] [5, 7] [8, 10] >10
diversity

0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sector4-Level6

1 [2, 4] [5, 7] [8, 10] >10
diversity

0.0

0.2

0.4

0.6

0.8

1.0
assignment = Sorting

ND
DF

Figure 2. The Distribution of Syntax Diversity in Clusters Produced by PaCon
The bars indicate the percentage (pc) of PaCon clusters that contain 1 syntax-based cluster, 2-4 syntax-based clusters, 5-7
syntax-based clusters, etc. The comparison with DF is shown in orange bars, and that with ND is shown in blue bars.

Table 3. The Description of Clusters and Our Tactic Summary for Sector2-Level5

Tactic Summary 𝑁𝑜𝐶 Clusters Num
𝑐0 Call Max and Min API methods or implement the API methods 66

Find the max and min elements of
𝑐1

Implement Max and Min API methods with an extra “=” in the “>=” and “<=”
1

the array, then return their difference comparison operators, such as “if (a[i] >= max) {max = a[i];}”

𝑐2
Implement Max and Min API methods with initialization of max and min

3
using different array elements, such as “int max = a[0]; int min = a[1];”

Sort first, then return 𝑐3 Call Array.sort API method or implement the API method 26
|a[length-1]-a[0]| 𝑐4 Call Array.sort API method and execute some extra code 2
Compute all the pairwise element

𝑐5 Compute all the pairwise element differences, then return the maximum 1
differences, then return the maximum

we discuss the analysis results of only two evaluation sub-
jects. The complete analysis results can be found at https:
//sites.google.com/view/paconproj/.

4.5.1 Case of Sector2-Level5. Table 3 shows the detailed
results of Sector2-Level5. We summarize three tactics based
on the clustering results of PaCon: “find the max and min
elements of the array, then return their difference”, “sort first,
then return |a[length-1]-a[0]|”, and “compute all the pair-
wise element differences, then return the maximum”.

For the first tactic in the table, PaCon produces three clus-
ters among which most of the submissions fall into cluster 𝑐0.
Submissions in cluster 𝑐0 either call the built-in Max and Min

API methods or implement the two API methods themselves.
There are also a few other submissions that adopt similar
tactics as those in cluster 𝑐0 but are not grouped into cluster

Bubble

Heap

Insertion

Merge

Quick

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
The clusters produed by PaCon

La
be

ls
 o

f S
or

tin
g 

pr
og

ra
m

s

Stable

No

Yes

Num

4

8

12

16

The results of PaCon for Sorting Programs

Figure 3. The Results of PaCon on Sorting Programs Com-
pared with Their Labels

𝑐0. For example, cluster 𝑐1 includes one submission that im-
plements the Max and Min API methods with extra “=” in the

https://sites.google.com/view/paconproj/
https://sites.google.com/view/paconproj/


PaCon: A Symbolic Analysis Approach for Tactic-Oriented Clustering of Programming Submissions SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

“>=” and “<=” comparison operators. To get the maximum
element in array a, most submissions use statements such as
“if (a[i]>max) {max = a[i];}”, whereas the submission in
cluster 𝑐1 uses the statement “if(a[i]>=max) {max = a[i];}”.
In addition, cluster 𝑐2 includes three submissions that ini-
tialize the max and min variables as different array elements
from those used in cluster 𝑐0 or 𝑐1.

Although the operator difference with extra “=” seems to
be of only syntactic nature, in some cases it does lead to
semantic differences of path conditions. Due to extra “=”, not
only the operator changes, but the comparisons also occur
for different pairs of elements. For example, consider that
we are calculating the maximum element in an array a = [2,

2, 1, 3]. When we use “if(a[i]>max)” for the update of
max, the path condition is a[1]<=a[0] && a[2]<=a[0] &&

a[3]>a[0]. But when we use “if(a[i]>=max)” for the update,
the path condition becomes a[1]>=a[0] && a[2]<a[1] &&

a[3]>=a[1].
For the second tactic in the table, PaCon produces two

clusters 𝑐3 and 𝑐4, and most of the submissions fall into clus-
ter 𝑐3. Submissions in clusters 𝑐3 first conduct sorting of the
given array elements, whereas besides conducting the sort-
ing, those in 𝑐4 also execute some extra code without which
the submissions still have the same return values but whose
execution introduces additional constraints in the path con-
ditions. For the third tactic in the table, there is one cluster
with only one submission that computes all the pairwise
element differences and then returns the maximum.

4.5.2 Case of the Sorting Problem. Figure 3 shows a
scatter plot for the clustering results produced by PaCon
on the sorting programs. The x axis indicates the clusters
produced by PaCon, and the y axis indicates five different
labels for the sorting programs. The number of programs is
reflected by the size of scatters.
According to the results shown in Figure 3, instead of

identifying different sorting labels, the clustering results
produced by PaCon reflect the stability of sorting. A sorting
program is stable if any two elements with equal values in
an array always appear in the same order in the program’s
output as they appear in the input [28]. Specifically, the
programs in 𝑐0 are all stable sorting programs, consisting of
most bubble sort programs, most insertion sort programs,
and most merge sort programs. The programs in the other
14 clusters are all unstable sorting programs.

Cluster 𝑐1 consists of one program of bubble sort and one
program of insertion sort. For the program implementing
bubble sort in 𝑐1, instead of comparing adjacent elements,
in each round, the program compares a fixed element with
each element following it and swaps the two elements when
an inversion is found. It is not a stable sorting program. The
program of insertion sort in cluster 𝑐1 actually implements
selection sort, and is also unstable.

Cluster 𝑐13 consists of two programs implementing merge
sort. When merging two ordered subarrays, the programs
put a[i] to the left of a[j] only when a[i] < a[j] (a[i]
is an element in the left subarray and a[j] is an element
in the right subarray). This operation causes the relative
order of the two elements a[i] and a[j] to be reversed if
their values are equal, so these two programs are not stable
sorting programs.

Programs in each of the remaining 12 clusters are all with
only one label. These programs implement either heap sort
or quick sort, and they are all unstable.

The remaining question is why PaCon divides those unsta-
ble sorting programs into different clusters. The key reason
is that the set of array input values for exposing the instabil-
ity of an unstable sorting program can be different from the
set for exposing the instability of another unstable sorting
program1. For instance, consider two quick sort programs𝑄1
and𝑄2 that use different criteria to select the pivot p, and an
input array arr = [1, 2𝑎, 2𝑏, 3, 4]. Suppose that program
𝑄1 takes the leftmost element as the pivot p, and program
𝑄2 takes the rightmost element as the pivot p. Both 𝑄1 and
𝑄2 put elements smaller than p to its left and put elements
not smaller than p to its right. After sorting, the output of
𝑄1 is still [1, 2𝑎, 2𝑏, 3, 4], but the output of 𝑄2 becomes
[1, 2𝑏, 2𝑎, 3, 4]. Although 𝑄1 and 𝑄2 are both unstable,
the instability of 𝑄2 is exposed by the input arr, but that of
𝑄1 is not. Recall that PaCon requires that programs in the
same cluster must have equivalent path conditions for each
generated test, so PaCon divides unstable sorting programs
into different clusters.

To further confirm our finding, after we add a precondition
of “all elements are distinct” to the input of sorting, PaCon
groups all sorting algorithms into the same cluster.

4.6 Summary of Results
In our evaluation, the number of clusters produced by PaCon
is reasonable and much less than that produced by syntax-
based tools. At the same time, the clusters effectively groups
together those submissions with high syntax diversity while
sharing equivalent path-condition-based semantics. Based on
our manual analysis, the clusters produced by PaCon can be
promising to characterize how the submissions differ in their
ways to solve the target problem. For the sorting problem,
although PaCon does not help recognize the common sorting
algorithms, it can still distinguish a significant characteristic
of sorting programs: whether a sorting program is stable or
not.

5 Discussion
There are two major limitations of PaCon in terms of its
current implementation and design.

1Note that even an unstable sorting program does not always swap two
equal elements in the given array input value.



SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Yingjie Fu, Jonathan Osei-Owusu, Angello Astorga, Zirui Neil Zhao, Wei Zhang, and Tao Xie

First, the implementation of PaCon includes a constraint
solver, such as Z3 [20], to check the equivalence of path
conditions, but there exist some cases (such as constraints
about HashSet) that Z3 cannot deal with. If such a situation
happens, PaCon directly regards the two path conditions as
nonequivalent (if their string forms are not the same) and
may divide submissions using the same tactic into separate
clusters. In our evaluation, PaCon encounters this situation
when clustering submissions for Sector3-Level6.

Second, PaCon uses the semantic equivalence of path con-
ditions to cluster submissions. It pays more attention to the
semantic of programs and can be robust in the face of many
syntactic differences. However, this trade-off has limitations
as well as benefits. When two submissions have two dif-
ferent tactics, and the tactic difference manifests in some
program features (such as the syntactic composition of con-
straints within a path condition) yet without impacting the
semantics of the path conditions, PaCon puts these two sub-
missions into the same cluster. In our evaluation, PaCon
encounters this situation when clustering submissions for
Sector4-Level2.

6 Related Work
Due to the growing nature of CS courses, clustering of pro-
gramming submissions becomes an appealing approach to
help quickly inspect a large number of submissions. A sub-
stantial body of work has been proposed for this task. In this
section, we discuss a number of closely related approaches.

CLARA [9],MistakeBrowser [10], and TipsC [22] all aim to
provide feedback to incorrect submissions. CLARA [9] and
TipsC [22] both cluster correct programming submissions.
In particular, CLARA puts two submissions into the same
cluster if they have the same control flow structure and there
exists a bijective relation between their variables. TipsC [22]
first normalizes the programs to linear representations and
then clusters “similar” programs according to a variant of the
Levenshtein edit distance. Different from CLARA and TipsC,
MistakeBrowser [10] first learns code transformations (i.e.,
code edits) to correct incorrect submissions, and then uses
the learned transformations to cluster incorrect submissions.

OverCode [6] is a system for visualizing and exploring the
variations in programming submissions. When clustering
submissions, OverCode first produces the cleaned code of
programs by renaming common variables that have identi-
cal sequences across two or more program traces, and then
groups the submissions whose cleaned code contains identi-
cal sets of program statements.
PaCon differs from CLARA, MistakeBrowser, TipsC, and

OverCode mainly in terms of the design goals. PaCon aims
to help instructors identify tactics in functionally correct
submissions, whereas the proceeding clustering approaches

aim to generate feedback to incorrect submissions or to vi-
sualize the variations in submissions. Due to such differ-
ences, PaCon pays more attention to the semantic features
of programs, whereas CLARA, MistakeBrowser, TipsC, and
OverCode mainly take syntactic features into account.

SolMiner [15] leverages static program analysis, data min-
ing, and machine learning to mine distinct solutions (with
different data structures, space-time complexity, etc.) from a
large pool of submissions. Given that SolMiner represents a
program as a sequence of mini-ASTs, each of which corre-
sponds to a portion of a basic block in the program, SolMiner
is less robust to syntactic differences in submissions than
PaCon.

SemCluster [18] clusters submissions (no matter correct or
incorrect) based on their vector representation. The vector
consists of two quantitative semantic features: the control
flow feature and the data flow feature. Given a program and
a test suite, the control flow feature tracks the number of
input values flowing through the same control flow paths
as different tests, whereas the data flow feature tracks the
number of times that a specific value in memory is changed
to another specific value. To enable the computation of the
control flow feature (involving model counting), SemCluster
requires instructors to provide bounds on the input values,
whereas PaCon has no such requirement. In addition, Sem-
Cluster leverages a classical clustering algorithm based on
similarity of quantitative semantic features across submis-
sions whereas PaCon conducts clustering with the help of
the Z3 constraint solver [20] based on the equivalence of path
condition semantics across submissions.

Grasa [17] aims to augment a given test suite with a min-
imal set of generated tests whose purpose is to detect a
maximum number of incorrect submissions. Different from
PaCon , to accomplish this objective, Grasa clusters incorrect
submissions by approximating their behavioral equivalence
to each other.

7 Conclusion
In this paper, we have raised the awareness of identifying
different problem-solving ways (named as tactics) in pro-
gramming submissions and proposed a symbolic analysis
approach named PaCon for clustering functionally correct
programming submissions to provide a way of identifying
tactics. Different from existing syntax-based approaches, Pa-
Con determines the semantic equivalence of programs by
the semantic equivalence of their path conditions. Our eval-
uation results on real-world data sets show that PaCon can
produce a reasonable number of clusters each of which ef-
fectively groups together those submissions with high syn-
tax diversity while sharing equivalent path-condition-based
semantics, providing a promising way toward identifying
tactics.



PaCon: A Symbolic Analysis Approach for Tactic-Oriented Clustering of Programming Submissions SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

References
[1] S. Bhatia, P. Kohli, and R. Singh. 2018. Neuro-Symbolic Program

Corrector for Introductory Programming Assignments. In Proc. 40th
IEEE/ACM International Conference on Software Engineering. 60–70.
https://doi.org/10.1145/3180155.3180219

[2] Judith Bishop, R. Nigel Horspool, Tao Xie, Nikolai Tillmann, and
Jonathan de Halleux. 2015. Code Hunt: Experience with Coding
Contests at Scale. In Proc. 37th IEEE/ACM International Conference on
Software Engineering. 398–407. https://doi.org/10.1109/ICSE.2015.172

[3] S. Combéfis and A. Schils. 2016. Automatic Programming Error Class
Identification with Code Plagiarism-Based Clustering. In Proc. 2nd
International Code Hunt Workshop on Educational Software Engineering.
1–6. https://doi.org/10.1145/2993270.2993271

[4] L. D’Antoni, R. Samanta, and R. Singh. 2016. Qlose: Program Repair
with Quantitative Objectives. In Proc. 28th International Conference on
Computer Aided Verification. 383–401. https://doi.org/10.1007/978-3-
319-41540-6_21

[5] A. Gerdes, B. Heeren, and J. Jeuring. 2012. Teachers and Students
in Charge. In Proc. 21st Century Learning for 21st Century Skills - 7th
European Conference of Technology Enhanced Learning. 383–388. https:
//doi.org/10.1007/978-3-642-33263-0_31

[6] E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and R. Miller. 2015. Over-
Code: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Trans. Comput. Hum. Interact. 22, 2 (2015),
1–35. https://doi.org/10.1145/2699751

[7] S. Gulwani. 2014. Example-Based Learning in Computer-aided STEM
Education. Commun. ACM 57, 8 (2014), 70–80. https://doi.org/10.1145/
2634273

[8] S. Gulwani, I. Radiček, and F. Zuleger. 2014. Feedback Generation for
Performance Problems in Introductory Programming Assignments. In
Proc. 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 41–51. https://doi.org/10.1145/2635868.2635912

[9] S. Gulwani, I. Radiček, and F. Zuleger. 2018. Automated Clustering and
Program Repair for Introductory Programming Assignments. In Proc.
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 465–480. https://doi.org/10.1145/3192366.3192387

[10] A. Head, E. L. Glassman, G. Soares, R. Suzuki, L. Figueredo, L. D’Antoni,
and B. Hartmann. 2017. Writing Reusable Code Feedback at Scale with
Mixed-Initiative Program Synthesis. In Proc. 4th ACM Conference on
Learning @ Scale. 89–98. https://doi.org/10.1145/3051457.3051467

[11] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury. 2019.
Re-Factoring Based Program Repair Applied to Programming Assign-
ments. In Proc. 34th IEEE/ACM International Conference on Automated
Software Engineering. 388–398. https://doi.org/10.1109/ASE.2019.00044

[12] JetBrains. 2021. DupFinder Command-line Tool. https://www.jetbrains.
com/help/resharper/dupFinder.html.

[13] H. Keuning, B. Heeren, and J. Jeuring. 2014. Strategy-Based Feedback
in a Programming Tutor. In Proc. Computer Science Education Research
Conference. 43–45. https://doi.org/10.1145/2691352.2691356

[14] James C. King. 1976. Symbolic Execution and Program Testing. Com-
mun. ACM 19, 7 (1976), 385–394. https://doi.org/10.1145/360248.360252

[15] L. Luo and Q. Zeng. 2016. SolMiner: Mining Distinct Solutions in
Programs. In Proc. 38th IEEE/ACM International Conference on Software

Engineering Companion. 481–490. https://doi.org/10.1145/2889160.
2889202

[16] Microsoft. 2021. Near-Duplicate Code Detector. https://github.com/
microsoft/near-duplicate-code-detector.

[17] J. Osei-Owusu, A. Astorga, L. Butler, T. Xie, and G. Challen. 2019.
Grading-Based Test Suite Augmentation. In Proc. 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering. 226–229.
https://doi.org/10.1109/ASE.2019.00030

[18] D. Perry, D. Kim, R. Samanta, and X. Zhang. 2019. SemCluster: Clus-
tering of Imperative Programming Assignments Based on Quantita-
tive Semantic Features. In Proc. 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 860–873. https:
//doi.org/10.1145/3314221.3314629

[19] Online Course Report. 2017. The 50 Most Popular MOOCs of All
Time. https://www.onlinecoursereport.com/the-50-most-popular-
moocs-of-all-time/.

[20] Microsoft Research. 2021. The Z3 Theorem Prover. https://github.
com/Z3Prover/z3.

[21] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R.
Suzuki, and B. Hartmann. 2017. Learning Syntactic Program Transfor-
mations from Examples. In Proc. 39th IEEE/ACM International Confer-
ence on Software Engineering. 404–415. https://doi.org/10.1109/ICSE.
2017.44

[22] S. Sharma, P. Agarwal, P. Mor, and A. Karkare. 2018. TipsC: Tips
and Corrections for Programming MOOCs. In Proc. 19th International
Conference on Artificial Intelligence in Education. 322–326. https:
//doi.org/10.1007/978-3-319-93846-2_60

[23] R. Singh, S. Gulwani, and A. Solar-Lezama. 2013. Automated Feed-
back Generation for Introductory Programming Assignments. In Proc.
34th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 15–26. https://doi.org/10.1145/2491956.2462195

[24] Tangible Software Solutions. 2004. C++ to C# Converter.
https://www.tangiblesoftwaresolutions.com/product_details/
cplusplus_to_csharp_converter_details.html

[25] N. Tillmann and J. de Halleux. 2008. Pex-White Box Test Generation for
.NET. In Proc. 2nd International Conference of Tests and Proofs. 134–153.
https://doi.org/10.1007/978-3-540-79124-9_10

[26] Nikolai Tillmann andWolfram Schulte. 2005. Parameterized Unit Tests.
In Proc. 10th European Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 253–262. https://doi.org/10.1145/1081706.1081749

[27] K. Wang, R. Singh, and Z. Su. 2018. Search, Align, and Repair: Data-
Driven Feedback Generation for Introductory Programming Exercises.
In Proc. 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 481–495. https://doi.org/10.1145/3192366.
3192384

[28] Wikipedia. 2020. Category: Stable sorts. https://en.wikipedia.org/
wiki/Category:Stable_sorts

[29] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury. 2017. A
Feasibility Study of Using Automated Program Repair for Introductory
Programming Assignments. In Proc. 11th Joint Meeting on Foundations
of Software Engineering. 740–751. https://doi.org/10.1145/3106237.
3106262

https://doi.org/10.1145/3180155.3180219
https://doi.org/10.1109/ICSE.2015.172
https://doi.org/10.1145/2993270.2993271
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-642-33263-0_31
https://doi.org/10.1007/978-3-642-33263-0_31
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2634273
https://doi.org/10.1145/2634273
https://doi.org/10.1145/2635868.2635912
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1109/ASE.2019.00044
https://www.jetbrains.com/help/resharper/dupFinder.html
https://www.jetbrains.com/help/resharper/dupFinder.html
https://doi.org/10.1145/2691352.2691356
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2889160.2889202
https://doi.org/10.1145/2889160.2889202
https://github.com/microsoft/near-duplicate-code-detector
https://github.com/microsoft/near-duplicate-code-detector
https://doi.org/10.1109/ASE.2019.00030
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/3314221.3314629
https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1007/978-3-319-93846-2_60
https://doi.org/10.1007/978-3-319-93846-2_60
https://doi.org/10.1145/2491956.2462195
https://www.tangiblesoftwaresolutions.com/product_details/cplusplus_to_csharp_converter_details.html
https://www.tangiblesoftwaresolutions.com/product_details/cplusplus_to_csharp_converter_details.html
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1145/1081706.1081749
https://doi.org/10.1145/3192366.3192384
https://doi.org/10.1145/3192366.3192384
https://en.wikipedia.org/wiki/Category:Stable_sorts
https://en.wikipedia.org/wiki/Category:Stable_sorts
https://doi.org/10.1145/3106237.3106262
https://doi.org/10.1145/3106237.3106262

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 An Overview of PaCon 
	3.2 Test Generation
	3.3 Path Condition Collection
	3.4 Path-Condition-Based Clustering

	4 Evaluation
	4.1 Research Questions
	4.2 Evaluation Subjects
	4.3 RQ1 Results: Number of Produced Clusters
	4.4 RQ2 Results: Syntax Diversity of Cluster
	4.5 RQ3 Results: Tactics Reflected by Clusters
	4.6 Summary of Results

	5 Discussion
	6 Related Work
	7 Conclusion
	References

